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Abstract: With the potential of Industry 4.0 technologies to enable sustainable manufacturing, asset
life cycle management (ALCM) has been gaining increasing attention in recent years. This study
explores the evolution of Industry 4.0 technology applications to sustainable ALCM from 2002 to
2021. This study is based on keywords collected from 3896 ALCM-related scientific articles published
in the Web of Science, IEEE Xplore and Engineering Village between 2002 and 2021. We conducted
a review analysis of these keywords using a network science-based methodology, which unlike
the tedious traditional literature review methods, gives the capability to analyze a huge number of
scientific articles efficiently. We built keyword co-occurrence networks (KCNs) from the keywords
and explored the network characteristics to uncover meaningful knowledge patterns, knowledge
components, knowledge structure, and research trends in the body of literature at the intersection
of ALCM and Industry 4.0. The network modeling and data analysis results identify the emerging
Industry 4.0-related keywords in ALCM literature and indicate the recent explosion of connectivity
among keywords. We found IoT, predictive maintenance and big data to be the top three most
popular Industry 4.0-related keywords in ALCM literature. Furthermore, this study maps relevant
ALCM keywords in contemporary literature to the nine pillars of Industry 4.0 to help the responsible
manufacturing community identify research trends and emerging technologies for sustainability.

Keywords: asset life cycle management (ALCM); sustainability; Industry 4.0; keyword co-occurrence
network (KCN); literature review

1. Introduction

Industry 4.0 refers to advanced technologies that bring connectivity, intelligence, agility
and digitalization to industrial applications. Many consider it a disruptive technological
wave that will significantly impact industries, society and the environment [1]. Industry
4.0 technologies facilitate collecting, sharing, and analyzing real-time data to connect the
cyber world and the physical world. This convergence of cyber and physical worlds creates
digital production systems that are decentralized, flexible, and resource efficient; they can
manufacture individualized products on demand [2]. In addition, technological advances,
such as big data and predictive analytics, pave the way for minimizing waste and resource
consumption [3].

Asset life cycle management (ALCM) in manufacturing is increasingly adopting
Industry 4.0 technologies for achieving sustainability goals. “Asset” refers to any piece
of property owned by a person or a firm. The asset life cycle comprises everything that
occurs from the identification of the need for the asset until its disposal [4]. Traditionally,
asset management has been identified as “a strategic, integrated set of comprehensive
processes (financial, management, engineering, operating, and maintenance) to improve
lifetime effectiveness, utilization and return from physical assets (production and operating
equipment and structures)” [5]. Typically, asset management approaches focus primarily
on cost minimization. However, in the current industrial setup, a strong positive correlation
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exists between environmental, social, governance (ESG) ratings and the return on assets [6].
The idea that organizations can achieve long-term benefits by focusing on sustainable
development has motivated manufacturing firms to adopt Industry 4.0 technologies for
ALCM. Asset-related decision making holds the utmost importance in ALCM [7,8]; this is
where decision support tools offered by Industry 4.0 mainly come into play.

The generally recognized nine pillars of Industry 4.0: advanced simulation, au-
tonomous robots, system integration, additive manufacturing, big data, augmented reality,
Internet of things (IoT), cloud computing and cybersecurity [9]. At the foundation of
Industry 4.0 is cyber–physical systems (CPS), in which physical objects and infrastructure
are controlled by computer-based algorithms that integrate sensing, networking and com-
putation. CPS provides the foundation for the Internet of things (IoT), which provides
smart objects with embedded sensors, software and other technologies to connect with
other objects. Such connected things fetch and exchange data through the Internet [8,10]
and in networks of devices [11]. Big data analytics is used to access vast amounts of data
and provide fast decision making by processing and learning from the data [12,13]. Big
data complements IoT to enable decision making. Another Industry 4.0 tool is advanced
simulation, which supports the prediction of stochastic processes occurring in the physical
world [14]. Following Table 1 in [15], Table 1 presents some recent studies that focus on
applying the nine pillars of Industry 4.0 to ALCM, for sustainability in the manufactur-
ing sector. The small sample of studies presented in Table 1 puts forward IoT, big data
and cloud computing as highly popular Industry 4.0 pillars used in the ALCM literature,
and this indication motivated us to carry out an analysis on a larger sample of studies.

Table 1. Publications that discuss applications of Industry 4.0 for ALCM for sustainability.

Article/s Contents Industry 4.0 Pillar/s

[16–19]

Performance prediction and long-term system
behavior monitoring using digital twins (DT);

digital continuity along different life cycle
phases of the system, to improve maintenance

decision making.

Advanced Simulation

[20–23] Equipment and product energy consumption
and emission monitoring and management.

IOT, Big Data,
Cloud Computing

[24,25] Tracking life cycle data using RFID to improve
end of life processing. IOT

[26–28] Implementation of IOT technologies for
improving re-manufacturing efficiency. IOT

[29–31]

Deep learning and big data for learning complex
system behavior to predict future states;

optimizing decision-making throughout the
entire life cycle using real time data and

information to achieve improvements in energy
savings and fault diagnosis.

Big Data, Cloud Computing

[32,33] Energy efficient machining optimization through
CPS and big data.

Autonomous Robots, Big
Data, Cloud Computing

[34,35] Machine conditioning monitoring system using
plant automation technologies.

IOT, Autonomous Robots,
Cloud Computing

[36–38] Predictive maintenance of assets using machine
learning and chronicle mining. Big Data, Cloud Computing

Despite the increasing attention on Industry 4.0-enabled ALCM for sustainability, re-
search trends in applying Industry 4.0 for sustainability in ALCM are rarely explored. In this
paper, we conducted a review of the existing knowledge structure, knowledge components,
and research trends concerning Industry 4.0 applications in ALCM for sustainability.

We conducted a network science-based literature review of 3896 ALCM-related scien-
tific articles published from 2002 to 2021. A conventional literature review is inherently
tedious, time consuming and not conducive to processing content from a large number of



Sustainability 2022, 14, 12233 3 of 15

papers. Hence, we used the keyword co-occurrence network (KCN) methodology [39,40] to
identify the knowledge structure and knowledge components of Industry 4.0 applications
in ALCM. KCN models each keyword as a node and the co-presence of two keywords in a
publication as an edge connecting the respective nodes. The number of times each keyword
pair co-occurs in the body of literature is captured by the weight of the edge connecting the
keyword pair. We implemented this KCN methodology on the keywords collected from
3896 ALCM-related articles to explore the critical network characteristics. A statistical and
visual analysis of the KCN results were performed to study the evolution of the Industry
4.0 applications in ALCM for sustainability.

The remainder of this article is organized as follows. The Methodology section intro-
duces the KCN methodology and describes the data collection and cleaning process. The Re-
sults section provides an analysis of the results of the experiments. The Discussion section
examines the existing knowledge structure and insightful trends observed in the results.
The Conclusions section summarizes the findings and states future research directions.

2. Methodology

This section provides a detailed description of the KCN methodology, the data collec-
tion and processing workflow, and key network parameters for drawing insights into the
characteristics of Industry 4.0 applications in ALCM.

2.1. The KCN Methodology

Citation network and KCN are two network-based methods that have been widely
used for analyzing the contents of scientific articles. A citation network identifies popular
studies based on their citation frequencies. It studies the scientific information transmission
in the domain by focusing on the associations among the cited work [41,42]. However,
it does not reveal emerging trends in the literature. In contrast, a KCN explores the
keywords in scientific articles to understand the knowledge components [43,44]. Keywords
give a quick overview of the prominent elements of the scientific article [45]. A KCN
captures associations among different knowledge components and measures the relative
importance of each component within the network. For the current study, the KCN
methodology is more appropriate than using citation network methods because we are
interested in analyzing the knowledge components of the articles rather than in identifying
the importance and popularity of articles (studies). This paper implements KCNs to analyze
the evolution of the topics in the scientific studies on Industry 4.0 applications in ALCM
over a period of two decades.

2.2. Data Collection and Processing

We collected literature related to applications of Industry 4.0 in ALCM for sustain-
ability from three databases: Web of Science, IEEE Xplore Digital Library and Engineering
Village. These databases provide access to more than 37,000 scientific articles. We used the
following query to collect articles published between 2002 and 2021 in the three databases.

(’sustainable’) AND (’asset life cycle’) AND (‘industry 4.0’ OR ‘cyber
physical’ OR ‘big data’ OR ’robotics’ OR ’IOT’ OR ’IIOT’ OR ‘augmented
reality’ OR ‘additive manufacturing’ OR ’cloud’ OR ‘system integration’ OR
‘simulation’ OR ‘cybersecurity’) AND (‘manufacturing’)

Articles were partitioned into four 4-year windows: 2002–2006, 2007–2011, 2012–2016,
and 2017–2021. A separate KCN was created for each window to investigate the evolution
of topics on Industry 4.0 for ALCM over a period of two decades. Figure 1 presents the
data collection and pre-processing procedure. The initial collection included 5907 articles:
3613 articles from Engineering Village, 1801 articles from Web of Science, and 493 articles
from IEEE Xplore. After cleaning the initial set of records by removing records with missing
data and duplicates, 3896 articles were input to the next step, i.e., keyword extraction. We
used natural language processing (NLP) methods to extract and process the keywords
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from the scientific articles. Then we processed these keywords to eliminate redundancy
by unifying hyphened and non-hyphened phrases (e.g., cyber-physical system and cyber
physical system), singular and plural variants (e.g., “decision support system” and “deci-
sion support systems”), synonyms (e.g., “performance measurement” and “performance
monitoring”) and acronyms (e.g., “IOT” and “internet of things”). Keyword processing
yielded 212, 632, 1885, and 3519 keywords for the periods 2002–2006, 2007–2011, 2012–2016
and 2017–2021, respectively. A separate adjacency matrix was built for each of the above
four windows using the co-occurrence counts of all the pairs of keywords in all the papers
belonging to each time window. Adjacency matrices were then input to different func-
tions in the Python Networkx package and other custom-built Python functions to obtain
network parameters and drive insights into the knowledge structure.

Figure 1. Data collection and pre-processing procedure.

2.3. Network Analysis Parameters

This section introduces key parameters [39,46,47] used in the current study for analyz-
ing the topology of the ALCM-keyword networks.

The degree (ki) of a node is the total number of edges connected to it. The degree of a
node (keyword) represents the number of different nodes (keywords) with which it has
synergy. The degree of a node is a measure of its association with other nodes.

ki = ∑
j∈V

eij

where V is the set of nodes in the network. eij ∈ {0, 1}, where eij = 1 if an edge exists
between node i and node j, and eij = 0 if otherwise. The higher the degree, the higher the
node’s importance in the network.

Degree values are normalized by dividing them by the maximum possible degree,
i.e., N − 1, where N is the total number of nodes in the network, to obtain the degree
centrality [46] (dci), which is a key measure of the relative popularity of a keyword within
the network.

dci =
∑j∈V eij

N − 1

The weight (wij) of an edge eij is the number of times node i and node j co-occur.
Weights of all the edges connected to node i are summed to obtain the strength (si) of node i,
which is an indicator of the popularity of node i in the network.
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si = ∑
j∈V

eijwij

Another important parameter is the average weight as a function of end point degrees:

< wij >∼ (kik j)

where ki and k j denote degrees of nodes i and j, respectively, kik j is the end point degree
of edge (i, j), and wij is the weight of the edge (i, j). The average weight < wij > is the
average of the weights of all edges whose end point degree is equal to kik j. The average
weight as a function of end point degrees is useful to understand the strength of the
association between nodes of different degrees. If wij proportionally increases with kik j, it
is an indication that connections among the high-degree keywords are more than the connections
among the low-degree keywords. If wij decreases with kik j, it is an indication that connections
among the low-degree keywords are more than the connections among the high-degree keywords.

Average weighted nearest neighbor’s degree kw
i of a node is another key parameter of

a KCN.

kw
i =

1
si

∑
j∈V

eijwijk j

It gauges the likelihood that nodes connect with neighboring nodes having similar
characteristics, i.e., high-degree nodes frequently connecting with high-degree neighboring
nodes and low-degree nodes frequently connecting with low-degree neighboring nodes.
If high-degree keywords show high values or low-degree keywords show low values
for this measure, it is an indication that high-degree keywords mostly associate with
high-degree keywords and low-degree keywords associate with low-degree keywords.
Otherwise, it can be inferred that high-degree and low-degree keywords associate with
both high-degree and low-degree keywords equally.

Weighted clustering coefficient (cw
i ) of a node is the final parameter explored in this

work. It is a measure of a node’s cohesiveness with its neighbors. It accounts for the local
structure clustered around a node in terms of the interaction intensity found in the local
triplets [47]. A high cw

i value reveals the strong cohesion among the keywords centered
around a keyword of interest.

cw
i =

1
si(ki − 1) ∑

j,h∈V

wij + wih

2
eijeihejh

3. Results

Table 2 presents the topological properties of KCNs in the four time windows. As can
be seen in Figure 2a, over the period from 2002 to 2021, the number of scientific articles on
Industry 4.0 adoption for sustainable ALCM increased by approximately 12 fold, indicating
a significant expansion of the body of knowledge over the years. The number of keywords
(nodes) increased by approximately a factor of 26, and the total number of connections
among keywords (edges) increased by a factor of 75; this indicates the emergence of many
novel keywords, the explosion of connectivity among these keywords, and the emergence
and convergence of many new research topics.

From Figure 2b, it is clear that the average degree and the average strength of keywords
rose at an increasing rate, hinting at a rapidly growing synergy among topics and concepts
about sustainable ALCM literature. While average values of degree, strength, and weight
have continued to increase over the years, maximum values of degree, strength, weight
have increased at a much higher rate compared to the average values. This indicates
the formation of strong and distinct keyword hubs with the expansion of a number of
keywords and connections. Maximum degree, strength, and weight significantly increased
from from 2011 onward, indicating that the earlier part of the second decade (between 2012
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and 2016) may have given rise to many novel keywords that became topics of significant
interest in the subsequent years. Figure 3a,b also illustrates that while the median of
node degree and strength have slightly increased over time, a considerable number of
dominant nodes with high degree and strength have emerged with time in the literature.
Figure 3c shows an interesting change in the pattern of weights. In the 2002–2006 period,
weights follow a heavily right-skewed lognormal distribution. However in the later time
windows, a majority of the weights have became almost uni-valued and a small number of
high-valued weights have come into existence. This implies that a few keyword pairs have
become the focus of researchers.

Table 2. Topological properties of four KCNs built for the four time windows.

Metric 2002–2006 2007–2011 2012–2016 2017–2021

No. of articles 181 506 1085 2124
No. of nodes 123 619 1607 3160
No. of edges 320 2066 8465 24,162
Av. degree 5.2 6.67 10.53 15.29

Max. degree 21 44 73 247
Av. strength 6.76 8.4 12.34 18.24

Max. strength 26 61 168 497
Av. weight 1.3 1.25 1.17 1.19

Max. weight 4 6 12 40

(a) (b)

Figure 2. Barplots of KCN topology properties across the four time windows. (a) Trends in number
of articles, nodes and edges. (b) Trends in node degree, node strength, and edge weights.

(a) (b) (c)

Figure 3. Boxplots of node degree, node strength and edge weight across the four time windows.
(a) Boxplots of node degree. (b) Boxplots of node strength. (c) Boxplots of edge weights.

Table 3 presents the first 20 keywords sorted in descending order of degree (ki) in
each KCN time window. It shows the evolution of the popularity of dominant key-
words in the network and identifies keywords that are gaining popularity in recent years.
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From 2002–2006 to 2007–2011, degree values increase, the degree of centrality decreases,
and new keywords appear in the list of top 20 keywords. This indicates a growth in the
volume of keywords, loss of popularity of the keywords that may have been established in
the period 2002–2006 and the emergence of novel keywords during 2007–2011. The emer-
gence of new keywords continued during 2012–2016, and these newly created keywords
remained active in the 2017–2021 period. It can be seen that Industry 4.0 related terms, such
as IoT, big data and artificial intelligence, have gained importance in ALCM literature from
2012 onward and continued to increase in popularity.

Table 3. Top 20 keywords with the highest degree (ki) and degree centrality (dci) values.

2002–2006 2007–2011 2012–2016 2017–2021

Keyword ki, dci Keyword ki, dci Keyword ki, dci Keyword ki, dci

Digital business 21, 0.172 Resource management 44, 0.0890 Decision making process 73, 0.059 IOT 247, 0.122

Web based management system 21, 0.172 Knowledge management 39, 0.066 Knowledge management 72, 0.053 Industry 4.0 166, 0.078

Business process 18, 0.147 Decision support system 37, 0.061 Life cycle management 46, 0.043 Big data 136, 0.058

Project management 17, 0.139 Asset management 37, 0.061 Decision support system 45, 0.037 Artificial intelligence 117, 0.047

Business model 17, 0.139 Sustainable development 31, 0.051 Continuous improvement 45, 0.036 Circular economy 115, 0.047

Global enterprise sustainability 17, 0.139 Operational efficiency 26, 0.038 IOT 40, 0.030 Energy efficiency 111, 0.039

ICT 16, 0.139 Continuous improvement 23, 0.037 Asset integration 35, 0.028 Decision making process 110, 0.037

Decision support system 15, 0.126 Multi criteria analysis 21, 0.032 Cyber-security 34, 0.026 Digital 108, 0.037

knowledge share 14, 0.114 Smart meter 21, 0.032 Performance measurement 34, 0.026 Life cycle 108, 0.037

Internet 12, 0.106 Life cycle assessment 16, 0.027 Big data 33, 0.024 Integration 98, 0.035

Resource management 12, 0.106 Real time energy management 14, 0.021 Maintenance 33, 0.024 Predictive maintenance 94, 0.034

Asset management 11, 0.106 Data 9, 0.016 Resilience 32, 0.024 Decision support system 93, 0.034

Multi agent based simulation 11, 0.106 Real time decision making 9, 0.016 Technology innovation 31, 0.023 Information and communication 80, 0.031

Intranet 9, 0.081 Equipment reliability 9, 0.016 ICT 27, 0.020 Digital twin 78, 0.031

Open-source software 8, 0.073 Return on assets 8, 0.014 Energy efficiency 26, 0.019 Blockchain 64, 0.028

Generalized asset optimization 7, 0.073 Particle swarm optimization 8, 0.014 Cyber-physical systems 23, 0.018 Cyber-physical systems 61, 0.0278

Life cycle cost 6, 0.065 Technology innovation 7, 0.014 Communication 22, 0.018 Machine learning 52, 0.024

Machine fault diagnosis 5, 0.059 Cloud computing 7, 0.014 Smart meter 22, 0.018 Cloud computing 52, 0.023

Environmental policy 4, 0.040 Information technology 6, 0.012 Real time monitoring 18, 0.016 Data analysis 46, 0.019

Business process management 3, 0.031 Waste recovery 6, 0.012 Data security 18, 0.016 Digital asset 45, 0.019

Figure 4 presents the rise or decline of keywords in their popularity in the time period
from 2012 to 2021, using two slope charts. The number next to each keyword is its rank in
the KCN after sorting them in descending order of strength, i.e., a rank of one (1) is given to
the keyword with the highest strength. The slope charts demonstrate the shift in the ranks
of keywords from 2012–2016 to 2017–2021. The slope chart on the left shows emerging
keywords, which improved their ranks in 2017–2021, while the slope chart on the right
gives declining keywords, which have lost their popularity in 2017–2021. Considering the
slopes of the dotted lines connecting the ranks of the keywords in the two time windows,
we can categorize the keywords into three groups. If the slope of the dotted line is almost
zero, we can say that it is a primary topic that has been favored during both of the time
windows. If the slope is positive, it is an emerging topic; if the slope is negative, it is a
declining topic.

• Primary topics: Decision support system seems to be a favored topic over the past
decade, and it is continuing to gain popularity. This can be referred to as a primary
topic that has shaped ALCM literature.
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• Emerging topics: Topics, such as machine learning, artificial intelligence, predictive
maintenance, and data analysis, show a significant increase in their popularity in the
latest time window compared to their presence in the previous years. In addition, IoT,
cloud computing, and big data have continued to gain increasing popularity.

• Declining topics: Topics outside Industry 4.0, such as decision making, simulation, and
system dynamics, show a declining pattern.

Figure 4. Slope charts of emerging keywords (left) and declining keywords (right). The value next to
each keyword represents the strength-based ranking of the keyword in the time window.

Table 4 presents keywords with the highest positive differences in strength based
rankings between 2012–2016 and 2017–2021, i.e., a rank of one (1) is given to the most
popular keyword. High positive difference in the strength based ranking indicates a rise in
the popularity of the keyword in 2017–2021. All of the keywords shown in the table have
gained considerable increase in popularity in 2017–2021, with machine learning, artificial
intelligence, data analysis, predictive maintenance and demand response improving by
more than 200 ranks.
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Table 4. Top 10 emerging Industry 4.0-related keywords, sorted in descending order of the difference
of ranks.

Keyword SBR 2012–2016 SBR 2017–2021 Rank Diff.

Machine learning 590 19 571
Artificial intelligence 482 5 477

Data analysis 338 22 316
Predictive maintenance 286 17 269

Demand response 318 91 227
Cloud computing 114 20 95

Cyber-physical system 85 18 68
Big data 49 4 45

Digitization 38 9 29
IOT 29 2 27

Figure 5 depicts four important network parameters of the KCNs for the four time
windows: 2002–2006, 2007–2011, 2012–2016 and 2017–2021. Note that both x-axes and
y-axes of these charts are on a logarithmic scale. Figure 5a presents probability distribution
functions (PDF) of edge weights of KCNs built for each period. All four PDFs show
a decaying pattern, indicating that heavy-weight edges are found less frequently than
light-weight edges in all four KCNs. In other words, the number of light-weight edges is
significantly larger than the number of heavy-weight edges. This observation suggests that
Industry 4.0 in sustainable ALCM literature has a few popular keywords that go together
with many other keywords, and the majority of the keywords co-exist with only a few
other keywords.

Figure 5b presents the average weight as a function of endpoint degrees, which
measures the impact of end node degrees of an edge on the weight of the edge. For all
four time windows, average edge weights increase with endpoint degrees, which implies
that keyword hubs are connected by heavy-weight edges. This association means that
a small set of prominent keywords (hubs) co-occur in multiple articles. Average weight
values sharply increase for kik j > 103, indicating a strong positive correlation between the
degree of endpoint nodes and the frequency of co-occurrence of keywords. For all four
periods, most of the average weights are close to one, indicating the presence of many
weakly connected keywords and a few heavily connected keyword hubs.

Figure 5c presents the trend in the average weighted nearest-neighbor degree as a
function of the node degree. This observation indicates that, for other than 2002–2006,
kw

i remained constant or slightly increased with the node degree. This result implies that
high-degree keywords equally co-occur with both high-degree and low-degree keywords.

Figure 5d shows how the weighted clustering coefficient changes with the degree.
The decreasing pattern indicates that the local structure of high-degree nodes in KCNs
are much less clustered than that of low-degree nodes. Clustering measures how well the
neighborhood is connected, where high clustering indicates a highly synergistic keyword
group. The decline in clustering coefficients indicates that high-degree keywords are
connected to neighboring keywords that do not form cohesive structures among them.
However, low-degree keywords are connected to neighboring keywords with tightly
connected local structures. It points to the tendency of high-degree keywords to connect
with a wide variety of keywords and low-degree keywords with well-connected keyword
groups. This behavior implies the emergence of a knowledge structure around a few
select keyword hubs. In general, the trend line for 2017–2021 is below those of other time
windows. This indicates that in the most recent time window, the new keywords are
connected with less clustered neighbors. However, the fluctuations at high-degree nodes in
the 2027–2021 period could be due to the dynamically changing synergy between popular
keywords and other recently added keywords.



Sustainability 2022, 14, 12233 10 of 15

(a) (b)

(c) (d)

Figure 5. Key KCN matrices for 2002–2006, 2007–2011, 2012–2016 and 2017–2021. (a) Weight distri-
bution. (b) Average weight vs. end point degree. (c) Average weighted nearest neighbor degree vs.
degree. (d) Weighted clustering coefficient vs. degree.

Table 5 presents ALCM keywords with the highest connection intensity to their neigh-
bors in the KCN of 2017–2021, and their Industry 4.0-related neighboring keywords. ALCM
topics, such as intelligent asset, data-driven circular economy, asset life cycle management,
master data management and asset maintenance management, frequently associate the
given Industry 4.0-related neighboring keywords, while keywords such as IoT and big data
are commonly associated with most of the ALCM topics presented in Table 5.

Table 5. Top 5 ALCM keywords with the highest weighted clustering coefficients, i.e., having highest
connection intensities with their neighbors, and Industry 4.0-related neighboring keywords.

ALCM Keyword Clustering
Coefficient

Industry 4.0-Related Neighboring
Keywords

Intelligent asset 0.038 {Industry 4.0, Cloud, IoT, Crowdsense,
Sensor data}

Data-driven circular economy 0.03 {IoT, Intelligent asset, Big data, Crowdsense}

Asset life cycle management 0.0219 {Big data, Industry 4.0, IoT, Predictive
maintenance, Artificial intelligence}

Master data management 0.019 {Big data, IoT, Semantic web technology}

Asset maintenance
management 0.015

{IoT, Statistical learning method, Sensor data,
Big data, Artificial intelligence, Neural

networks, Data mining, Predictive
maintenance}
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4. Discussion

From 2002 to 2021, the number of studies on Industry 4.0 applications in ALCM
increased 12 fold, while the number of keywords and connections between keywords
increased 26 fold and 75 fold, respectively. The volume of the literature grew considerably,
and so did the number of keywords, indicating the emergence of novel topics and broaden-
ing of the knowledge base. As the number of new keywords increased, the associations
between them have grown three times faster. From 2012 onward, new keywords emerged
from the research articles covering digital twin, IoT, and big data applications on ALCM,
which experienced a rapid expansion. With the number of keywords increasing by 26 fold
and connections by 75 fold, Industry 4.0-enabled sustainable ALCM has experienced a
widening and deepening knowledge structure in recent years.

Although the size of KCNs expanded over the years, the average weight of KCNs
did not vary much over the four time periods. This observation indicates that the average
connection density of the KCNs remained the same over the years, although the distribution
of the connections to nodes became uneven. The left-skewed distribution of node degrees
and decreasing weight clustering coefficients imply that most keywords are low degree,
and most of the edges are light weight. In other words, the KCNs have only a few keywords
that are prominently connected with other keywords in the field. This trend might be
because many researchers published scientific articles on popular topics.

A few keywords (e.g., IoT, big data, and Industry 4.0) co-occur with a wide variety
of other keywords, while most of the keywords co-occur with only a few other keywords.
High-degree keywords (e.g., IoT) tend to co-occur with both high-degree and low-degree
keywords. While lesser explored topics appear in a small number of keyword groups, well-
known keywords appear in many keyword groups. This shows that the high-frequency
keywords are associated with many different subtopics of ALCM. Many keywords have
lost popularity over time, and new keywords have been emerging for the past decade. IoT,
big data, artificial intelligence, machine learning, and predictive maintenance are some
emerging keywords, with artificial intelligence and machine learning showing considerable
growth in the last decade. Table 6 presents the top 10 ALCM-Industry 4.0 keyword pairs
in the ALCM literature that are connected by heavy-weight edges, i.e., most frequently
co-occurring keywords, in the 2017–2021 KCN. Note that we included only ALCM-Industry
4.0 keyword pairs in Table 6, ignoring keyword pairs not relevant to the ALCM-Industry
4.0 nexus. It can be seen that IoT co-occurred the most with asset management. In addition,
keywords such as predictive maintenance, decision support systems and big data show
high co-occurrence frequencies with ALCM keywords. These trends reveal future research
and technology directions.

Table 6. Top 10 most frequently co-occurring ALCM-Industry 4.0 keyword pairs in the ALCM KCN
of 2017–2021.

ALCM-Industry 4.0 Keyword Pair Weight of the Edge Connecting the Pair (wij)

Asset management—IoT 16
Asset management—Industry 4.0 15
Demand response—Industry 4.0 13

Asset management—Predictive maintenance 12
Sustainability—IoT 11

Smart asset—IoT 9
Asset management—Big data 7

Supply chain—IoT 6
Circular economy—IoT 6

Life cycle—Predictive maintenance 6

Technologies that have been gaining popularity over the last four years can be cate-
gorized as data analytics (data mining and machine learning), cloud-based technologies
(big data, and IoT), and cyber–physical technologies (digital twins, and cybersecurity).
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With the dawn of the smart manufacturing era, the life cycle management of manufacturing
assets has become technology driven. As a result, the research focus has been shifting to
cyber technologies that enable efficient and sustainable management of manufacturing
assets. These developments are expected to continue to grow in the near future. KCN
topology properties for the four time windows indicate that the co-occurrence of keywords
has grown significantly over the years. However, the cohesiveness of most keywords
weakened from the earlier years to the later years, as many new weakly connected key-
words have emerged in recent years. This indicates that researchers, in recent years, have
been exploring innovative approaches to life cycle management of manufacturing assets
leveraging Industry 4.0 technologies. Overall, the research community of Industry 4.0
for sustainable ALCM, IoT, and other cloud-based technologies has proliferated, and the
knowledge structure is expanding with a greater convergence.

Figure 6 presents the authors’ subjective mapping of ALCM keywords relevant to the
nine pillars of Industry 4.0. Popular Industry 4.0-associated keywords found in the KCN
for 2017–2021 are given on the left, and the nine pillars of Industry 4.0 are given on the right.
According to the authors’ subjective mapping, cloud computing, IoT, and big data are the
three most popular pillars with the highest representation in the KCN, which indicates that
they play a significant role in defining the current technology trends in sustainable ALCM.

Figure 6. The authors’ subjective mapping of top 22 Industry 4.0 keywords for 2017–2021 (left) ranked
in the order of their strength to the nine pillars of Industry 4.0 (right). The value next to each keyword
indicates the count of Industry 4.0 pillars associated with the keyword. Similarly, the number next to
each pillar indicates the number of keywords associated with the pillar.
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5. Conclusions

This study performed a keyword co-occurrence network (KCN) analysis of keywords
in 3896 scientific articles related to Industry 4.0 as applied to ALCM for sustainability.
These articles were published during the period from 2002 to 2021. The analysis reveals
the evolution of knowledge structure over the past 20 years and the current and expected
trends in the literature. The statistical analysis of network characteristics provides insights
into trends in ALCM research (e.g., big data, artificial intelligence, IoT, and cloud com-
puting) over time. Traditional literature reviews discuss methodologies and experimental
findings. In contrast, KCN provides a macro-level understanding of the evolution of the
knowledge structure and knowledge components to inform researchers about the declining
and emerging research topics in the literature. It summarizes key characteristics of the
body of literature and enables researchers to understand the big picture of knowledge
trends quickly.

This study maps high-frequency ALCM keywords to nine pillars of Industry 4.0:
advanced simulation, system integration, autonomous robots, augmented reality, additive
manufacturing, Internet of things (IoT), big data, cloud computing, and cybersecurity.
The popularity of each pillar provides insights into future research directions. Results
depict that, currently, the top three most popular pillars in sustainable ALCM research are
big data, IoT, and cloud computing. The KCN-based review and analysis results presented
in this paper can serve as a road map for conducting a rigorous systematic review of the
literature on Industry 4.0 technologies for ALCM.

Although this analysis uses only keywords to build the KCN and is as objective as
possible, it may still have bias if the authors failed to identify vital terms as keywords. Due
to the limitations of the natural language processing methods, some distorted, irrelevant,
and redundant keywords might have made their way in to the final keyword list used for
building KCNs. However, the effect of such noise in the keyword list is not likely to alter
the observations made in this work. The KCN-based approach is otherwise very effective
in reviewing the knowledge structure and research trends macroscopically. Future work
could include extracting keywords from the articles’ titles to make the knowledge coverage
more comprehensive.
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