Northeastern University
College of Engineering

IE6600-Workshop

Visualizing with PCA

Zhenyuan Lu

1.Curse of dimensionality

True vs. Observed Dimensionality

What is the dimensionality of this dataset?

ID	Observed Value $\left(x_{1}\right)$ - Height (cm)	Predictive Value (y) - Weight (kg)
1	170	65
2	187	80
3	175	75
4	160	45
5	159	56

True vs. Observed Dimensionality

What is the dimensionality of this dataset?

ID	Observed Value $\left(x_{1}\right)$ - Height (cm)	Predictive Value (y) - Weight (kg)
1	170	65
2	187	80
3	175	75
4	160	45
5	159	56

Observed Dimensionality: 6

True vs. Observed Dimensionality

True Dimensionality: 3

ID	Observed Value $\left(x_{1}\right)-$ Height (cm)	Observed value $\left(x_{2}\right)-$ Waist (cm)	Predictive Value $(\mathrm{y})-$ Weight (kg)
1	170	67	65
2	187	86	80
3	175	76	75
4	160	59	45
5	159	66	56

Curse of Dimensionality

Example:

True Dimensionality

- 20x20 bitmap: $\{0,1\} 400$ potential events
- The handwritten number THREE may be only 2^{40} events

20×20 bitmap

Curse of Dimensionality

Example:

- 20×20 bitmap: $\{0,1\}^{400}$ potential events
- Randomly sampling 2400 events

20×20 bitmap

Curse of Dimensionality

Data mining/Machine learning methods are statistical

- Use numbers to build up the predictor $f(x)$
- Use categorical variables to classify: $\{0,1\}$

Dimensionality (d) increases, and fewer observations (n) per region In the case of $d \gg n$

- 1d: 3 regions
- 2d: 3^{2} regions
- 100d - well...

2.Methods of dealing with high dimensionality

Methods Dealing with high dimensionality

Use domain knowledge

- Feature engineering
- e.g. Testosterone -> Muscle building

Assumption on dimensions

- Independence: count along each dimension, e.g. Naïve bayes.
When counting the frequency of x_{1} ignore the x_{2}
- Smoothness: nearby region should have similar distribution of classes
- Symmetry: e.g. invariance to order of the dimensions: order doesn't matter

Reduce the dimensionality

- Create a new set of variables

Dimensionality Reduction

Feature selection

- Select a subset of the original dimension:

$$
x_{1}, x_{2}, x_{3}, x_{4} x_{5}
$$

- Discriminative: Select class as predictor

Feature extraction

- Construct a new set of dimensions:

$$
E_{i}=f\left(x_{1}, x_{2}, x_{3}, x_{4} x_{5}\right)
$$

- e.g. Linear combination of original dimensions: PCA
3.Principal components analysis (PCA)

One of the most beautiful ALGORITHMs

Principal Components Analysis (PCA)

The goal of PCA is to find a new set of dimensions (attributes) that better captures the variability of the data.

Some Math

Standard Basis Vector

d-dimensional Cartesian coordinate space is specified via the d unit vectors, called the standard basis vectors, along each of the axes. The j-th standard basis vector e_{j} is the d-dimensional unit vector whose j-th component is 1 and the rest of the components are 0

$$
e_{j}=\left(0,1_{j}, \ldots, 0\right)^{T}
$$

Any other vector in \mathbb{R}^{d} can be written as linear combination of the standard basis vectors. For example, each of the points xi can be written as the linear combination

$$
x_{i}=x_{i 1} e_{1}+x_{i 2} e_{2}+\cdots+x_{i d} e_{d}=\sum_{j=1}^{d} x_{i j} e_{j}
$$

where the scalar value $x_{i j}$ is the coordinate value along the j-th axis or attribute

Standard Basis Vector

For example:
Consider the Iris data
$\left(\begin{array}{c|ccccc} & \begin{array}{c}\text { sepal } \\ \text { length } \\ X_{1}\end{array} & \begin{array}{c}\text { sepal } \\ \text { width } \\ X_{2}\end{array} & \begin{array}{c}\text { petal } \\ \text { length } \\ X_{2}\end{array} & \begin{array}{c}\text { petal } \\ \text { width } \\ X_{4}\end{array} & \text { class } \\ \hline \mathrm{x}_{1} & 5.9 & 3.0 & 4.2 & 1.5 & X_{5} \\ \mathrm{x}_{2} & 0.9 & 5.1 & 4.9 & 1.5 & \text { Iris-versicolor } \\ \mathrm{x}_{3} & 6.6 & 2.9 & 4.6 & 1.3 & \text { Iris-versicolor } \\ \mathrm{x}_{4} & 4.6 & 3.2 & 1.4 & 0.2 & \text { Iris-setosa } \\ \mathrm{x}_{5} & 6.0 & 2.2 & 4.0 & 1.0 & \text { Iris-versicolor } \\ \mathrm{x}_{6} & 4.7 & 3.2 & 1.3 & 0.2 & \text { Iris-setosa } \\ \mathrm{x}_{7} & 6.5 & 3.0 & 5.8 & 2.2 & \text { Iris-virginica } \\ \mathrm{x}_{8} & 5.8 & 2.7 & 5.1 & 1.9 & \text { Iris-virginica } \\ \vdots & \vdots & \vdots & \vdots & \vdots & \\ \mathrm{x}_{149} & 7.7 & 3.8 & 6.7 & 2.2 & \text { Iris-virginica } \\ \mathrm{x}_{150} & 5.1 & 3.4 & 1.5 & 0.2 & \text { Iris-setosa }\end{array}\right)$

$$
x_{1}=(5.9,3.0,4.2)
$$

$$
x_{1}=5.9 e_{1}+3.0 e_{2}+4.2 e_{3}=5.9\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+3.0\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+4.2\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{l}
5.9 \\
3.0 \\
4.2
\end{array}\right)
$$

Geometric View

For example:

$$
\begin{gathered}
x_{1}=(5.9,3.0) \\
x_{1} \in \mathbb{R}^{2}
\end{gathered}
$$

Original Points to New Coordinates

Let the data \mathbf{D} consist of n points over d attributes, i.e., it is an $n \times d$ matrix, given as

$$
\mathbf{D}=\left(\begin{array}{c|cccc}
& X_{1} & X_{2} & \cdots & X_{d} \\
\hline \mathbf{x}_{1} & x_{11} & x_{12} & \cdots & x_{1 d} \\
\mathbf{x}_{2} & x_{21} & x_{22} & \cdots & x_{2 d} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\mathbf{x}_{n} & x_{n 1} & x_{n 2} & \cdots & x_{n d}
\end{array}\right)
$$

Each point $\mathbf{x}_{i}=\left(x_{i 1}, x_{i 2}, \cdots, x_{i d}\right)^{T}$ is a vector in the ambient d-dimensional vector space spanned by the d standard basis vectors $\mathbf{e}_{1}, \mathbf{e}_{2}, \cdots, \mathbf{e}_{d}$, where \mathbf{e}_{i} corresponds to the i-th attribute X_{i}. Recall that the standard basis is an orthonormal basis for the data space, i.e., the basis vectors are pair-wise orthogonal, $\mathbf{e}_{i}^{T} \mathbf{e}_{j}=0$, and have unit length $\left\|\mathbf{e}_{i}\right\|=1$.

Original Points to New Coordinates

Original Points to New Coordinates

As such, given any other set of d orthonormal vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{d}$, with $\mathbf{u}_{i}^{T} \mathbf{u}_{j}=$ 0 and $\left\|\mathbf{u}_{i}\right\|=1$ (or $\mathbf{u}_{i}^{T} \mathbf{u}_{i}=1$), we can re-express each point \mathbf{x} as the linear combination

$$
x=a_{1} u_{1}+a_{2} u_{2}+\cdots+a_{d} u_{d}
$$

where the vector $\mathbf{a}=\left(a_{1}, a_{2}, \cdots, a_{d}\right)^{T}$ represents the coordinates of \mathbf{x} in the new basis. The above linear combination can also be expressed as a matrix multiplication

$$
x=U a
$$

where \mathbf{U} is the $d \times d$ matrix, whose i-th column comprises the i-th basis vector \mathbf{u}_{i}

$$
U=\left(\begin{array}{ccc}
\mid & \mid & \mid \\
u_{1} u_{2} & \cdots & u_{d} \\
\mid & \mid & \mid
\end{array}\right)
$$

Original Points to New Coordinates

The matrix \mathbf{U} is an orthogonal matrix, whose columns, the basis vectors, are orthonormal, i.e., they are pairwise orthogonal and have unit length

$$
\mathbf{u}_{i}^{T} \mathbf{u}_{j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

Since \mathbf{U} is orthogonal, this means that its inverse equals its transpose

$$
\mathbf{U}^{-1}=\mathbf{U}^{T}
$$

which implies that $\mathbf{U}^{T} \mathbf{U}=\mathbf{I}$, where \mathbf{I} is the $d \times d$ identity matrix.

$$
\begin{gathered}
x=U a \\
U^{T} x=U^{T} U a \\
a=U^{T} x
\end{gathered}
$$

Original Points to New Coordinates

For example:

Original Basis

Optimal Basis

Original Points to New Coordinates

$$
\begin{gathered}
x=U a \\
a=U^{T} x
\end{gathered}
$$

For example:

$$
u_{1}=\left(\begin{array}{c}
-0.390 \\
0.089 \\
-0.916
\end{array}\right) \quad u_{2}=\left(\begin{array}{c}
-0.639 \\
-0.742 \\
0.200
\end{array}\right) \quad u_{3}=\left(\begin{array}{c}
-0.663 \\
0.664 \\
0.346
\end{array}\right)
$$

The new coordinates of the centered point $x=(-0.343,-0.754,0.241)^{T}$ can be computed as:

$$
a=U^{T} x=\left(\begin{array}{ccc}
-0.390 & 0.089 & -0.916 \\
-0.639 & -0.742 & 0.200 \\
-0.663 & 0.664 & 0.346
\end{array}\right)\left(\begin{array}{c}
-0.390 \\
0.089 \\
-0.916
\end{array}\right)=\left(\begin{array}{c}
-0.154 \\
0.828 \\
-0.190
\end{array}\right)
$$

x can be written as the linear combination
$x=-0.154 u_{1}+0.828 u_{2}-0.190 u_{3}$

PCA

1. Find the first dimension to capture as much of the variability as possible
2. The second dimension is orthogonal to the first, and subject to that constraint, captures as much of the remaining variability.
3. And so on... until the $\mathrm{d}^{\text {th }}$ dimension.

e.

IE6600 Visualization and Computation for Analytics, NEU |

PCA Why find greatest variability?

Example:

We have a 2 dimensional data here to project all the data
points to 1 dimension axis $u_{1}, u_{2}:\left\{x_{1}, x_{2}\right\}$-> u_{1}, u_{2}
The data points in u_{1}-space are more expanded (greater variability) than in u_{2}-space.

1. Points are close in u_{2}-space but far in (x_{1}, x_{2}-space which is not so ideal to represent the original dataset
2. The overall distances in u_{1}-space, with the highest variability, can represent the original
 distribution and variability

PCA Find mean and center the data

1. Center the data at zero: $Z=D-1 \cdot \mu^{T}$

$$
=0(0)-10)
$$

[^0]
PCA Direction

1. Center the data at zero: $Z=D-1 \cdot \mu^{T}$
2. Covariance matrix $\sum=\frac{1}{n}\left(Z^{T} Z\right)$

- covariance of x_{1}, x_{2} :
- x_{1}, x_{2} increase or decrease together or when one decreases the other one increases

Example
$\operatorname{cov}\left(x_{i}, x_{j}\right)=\frac{\left(x_{i}-\mu_{i}\right)^{T}\left(x_{j}-\mu_{j}\right)}{n}$, After data centered: $\mu=0, \operatorname{cov}\left(x_{i}, x_{j}\right)=\frac{x_{i}^{T} x_{j}}{n}$

Say we have two sets of
attributes $\sigma_{1}^{2}=2, \sigma_{2}^{2}=0.6$

$$
\begin{array}{ll}
x_{1} \\
x_{2}
\end{array}\left(\begin{array}{ll}
2.0 & 0.8 \\
0.8 & 0.6
\end{array}\right) \quad \operatorname{cov}\left(x_{1}, x_{2}\right)=0.8
$$

3. Multiply a vector $\binom{-1}{1}$ by $\left(\begin{array}{cc}2.0 & 0.8 \\ 0.8 & 0.6\end{array}\right)$:

$$
\begin{gathered}
\text { a. }\left(\begin{array}{ll}
2.0 & 0.8 \\
0.8 & 0.6
\end{array}\right)\binom{-1}{1}=\binom{-1.2}{-0.2} \text { b. }\left(\begin{array}{ll}
2.0 & 0.8 \\
0.8 & 0.6
\end{array}\right)\binom{-1.2}{-0.2}=\binom{-2.6}{-1.0} \\
\text { c. }\left(\begin{array}{ll}
2.0 & 0.8 \\
0.8 & 0.6
\end{array}\right)\binom{-2.6}{-1.0} \\
\text { Slope: } \left.0.45 \quad \begin{array}{l}
-6.0 \\
-2.7
\end{array}\right) \rightarrow\binom{-14.1}{-6.4} \rightarrow\binom{-33.3}{-15.1} \\
0.454
\end{gathered}
$$

Towards the greatest variance direction

PCA Direction

4. Look for a vector always keep in the same direction: $\sum u=\lambda u$

- u: eigenvectors
- $\quad \sum$: covariance matrix
- λ : scalar variable
- Principal components = eigenvectors with largest eigenvalues

PCA Find eigenvalues, eigenvector, and PCs

1. Find eigenvalues by solving : $\Sigma \boldsymbol{u}=\lambda \boldsymbol{u} \rightarrow|\Sigma-\lambda I|=\mathbf{0}$. (NOTE: Determinant of matrix $A:|A|)$

$$
\begin{aligned}
& -\left|\begin{array}{cc}
2.0-\lambda & 0.8 \\
0.8 & 0.6-\lambda
\end{array}\right|=(2-\lambda)(0.6-\lambda)-0.8 * 0.8=\lambda^{2}-2.6 \lambda+0.56=0 \\
& -\quad\left\{\lambda_{1}, \lambda_{2}\right\}=\frac{1}{2}\left(2.6 \pm \sqrt{2.6^{2}-4 * 0.56}\right)=\{2.36,0.23\}
\end{aligned}
$$

2. Find $\boldsymbol{i}^{\boldsymbol{t h}}$ eigenvector by solving: $\sum \boldsymbol{u}_{\boldsymbol{i}}=\boldsymbol{\lambda}_{\boldsymbol{i}} \boldsymbol{u}_{\boldsymbol{i}}$
$-\left(\begin{array}{ll}2.0 & 0.8 \\ 0.8 & 0.6\end{array}\right)\binom{u_{11}}{u_{12}}=2.36\binom{u_{11}}{u_{12}}$
$\rightarrow \begin{gathered}2 u_{11}+0.8 u_{12}=2.36 u_{11} \\ 0.8 u_{11}+0.6 u_{12}=2.36 u_{12}\end{gathered} \rightarrow u_{11}=2.2 u_{12} \rightarrow u_{1} \sim\binom{2.2}{1}$,
\rightarrow make $\left\|u_{1}\right\|=1, u_{1} \frac{1}{\sqrt{2.2^{2}+1}}$, then $u_{1}=\binom{0.91}{0.41}$, slope $=0.454$
$-\left(\begin{array}{ll}2.0 & 0.8 \\ 0.8 & 0.6\end{array}\right)\binom{u_{21}}{u_{22}}=0.23\binom{u_{21}}{u_{22}} \rightarrow$ then $u_{2}=\binom{-0.41}{0.91}$
3. $1^{\text {st }} P C:\binom{0.91}{0.41}, 2^{\text {nd }} P C:\binom{-0.41}{0.91}$

PCA Fraction of total variance, and choose dimensionality

Often we may not know how many dimensions, r, to use for a good approximation. One criteria for choosing r is to compute the fraction of the total variance captured by the first r principal components, computed as

$$
f(r)=\frac{\lambda_{1}+\lambda_{2}+\cdots+\lambda_{r}}{\lambda_{1}+\lambda_{2}+\cdots+\lambda_{d}}=\frac{\sum_{i=1}^{r} \lambda_{i}}{\sum_{i=1}^{d} \lambda_{i}}=\frac{\sum_{i=1}^{r} \lambda_{i}}{\operatorname{var}(D)}
$$

Given a certain desired variance threshold, say α, starting from the first principal component, we keep on adding additional components, and stop at the smallest value r, for which $f(r) \geq$ α (α can be 0.9, 0.95 as purposes).

In practice, α is usually set to 0.9 or higher, so that the reduced dataset captures at least 90% of the total variance.

Algorithm 7.1: Principal Component Analysis

PCA (D, α):
$1 \boldsymbol{\mu}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} / /$ compute mean
$\mathbf{2} \mathbf{Z}=\mathbf{D}-\mathbf{1} \cdot \boldsymbol{\mu}^{T} / /$ center the data
$3 \mathbf{\Sigma}=\frac{1}{n}\left(\mathbf{Z}^{T} \mathbf{Z}\right) / /$ compute covariance matrix
$4\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{d}\right)=$ eigenvalues $(\boldsymbol{\Sigma}) / /$ compute eigenvalues
$\mathbf{5} \mathbf{U}=\left(\begin{array}{llll}\mathbf{u}_{1} & \mathbf{u}_{2} & \cdots & \mathbf{u}_{d}\end{array}\right)=$ eigenvectors $(\boldsymbol{\Sigma}) / /$ compute eigenvectors
${ }_{6} f(r)=\frac{\sum_{i=1}^{r} \lambda_{i}}{\sum_{i=1}^{d} \lambda_{i}}$, for all $r=1,2, \cdots, d / /$ fraction of total variance
7 Choose smallest r so that $f(r) \geq \alpha / /$ choose dimensionality
$8 \mathbf{U}_{r}=\left(\begin{array}{llll}\mathbf{u}_{1} & \mathbf{u}_{2} & \cdots & \mathbf{u}_{r}\end{array}\right) / /$ reduced basis
$\mathbf{9} \mathbf{A}=\left\{\mathbf{a}_{i} \mid \mathbf{a}_{i}=\mathbf{U}_{r}^{T} \mathbf{x}_{i}\right.$, for $\left.i=1, \cdots, n\right\} / /$ reduced dimensionality data

PCA

Compute the covariance matrix
Find the greatest variability

$$
\boldsymbol{\Sigma}=\frac{1}{n}\left(\mathbf{Z}^{T} \mathbf{Z}\right)
$$

d.

e.

Project original points to the
new dimensions and
choose PCs
$f(r)=\frac{\sum_{i=1}^{r} \lambda_{i}}{\sum_{i=1}^{d} \lambda_{i}}$

Novembre, John et al. "Genes mirror geography within Europe." Nature vol. 456,7218 (2008):
98-101. doi:10.1038/nature07331

$$
\begin{gathered}
\sum=\left(\begin{array}{ccc}
0.681 & -0.039 & 1.265 \\
-0.039 & 0.187 & -0.320 \\
1.265 & -0.32 & 3.092
\end{array}\right) \\
\lambda_{1}=3.662 \quad \lambda_{2}=0.239 \quad \lambda_{3}=0.059
\end{gathered}
$$

Question

$$
u_{1}=\left(\begin{array}{c}
-0.39 \\
0.089 \\
-0.916
\end{array}\right) \quad u_{2}=\left(\begin{array}{c}
-0.639 \\
-0.742 \\
0.200
\end{array}\right) \quad u_{3}=\left(\begin{array}{c}
-0.663 \\
0.664 \\
0.346
\end{array}\right)
$$

What is the total variance?
What is the fraction of total variance for each PC?
If let $\alpha=0.95$ how many PCs we need to keep?

4.PCA Implementation in R

```
Algorithm 7.1: Principal Component Analysis
    PCA (D, \alpha):
    1 }\boldsymbol{\mu}=\frac{1}{n}\mp@subsup{\sum}{i=1}{n}\mp@subsup{\mathbf{x}}{i}{}// compute mean
    Z = D - 1}\cdot\mp@subsup{\boldsymbol{\mu}}{}{T}// center the data
    \Sigma = \frac{1}{n}(\mp@subsup{\mathbf{Z}}{}{T}\mathbf{Z})// compute covariance matrix
    (}\mp@subsup{\lambda}{1}{},\mp@subsup{\lambda}{2}{},\cdots,\mp@subsup{\lambda}{d}{})=\mathrm{ eigenvalues(}\boldsymbol{\Sigma})// compute eigenvalues
    U =( (\begin{array}{llll}{\mp@subsup{\mathbf{u}}{1}{}}&{\mp@subsup{\mathbf{u}}{2}{}}&{\cdots}&{\mp@subsup{\mathbf{u}}{d}{}}\end{array})=\mathrm{ eigenvectors }(\boldsymbol{\Sigma})// compute eigenvectors
    f(r)= 豕r=1 \mp@subsup{\lambda}{i}{}
    Choose smallest r so that }f(r)\geq\alpha// choose dimensionalit
    \mp@subsup{\mathbf{U}}{r}{}=(\begin{array}{llll}{\mp@subsup{\mathbf{u}}{1}{}}&{\mp@subsup{\mathbf{u}}{2}{}}&{\cdots}&{\mp@subsup{\mathbf{u}}{r}{}}\end{array})// reduced basis
    A ={\mp@subsup{\mathbf{a}}{i}{}|\mp@subsup{\mathbf{a}}{i}{}=\mp@subsup{\mathbf{U}}{r}{T}\mp@subsup{\mathbf{x}}{i}{},\mathrm{ for }i=1,\cdots,n}// reduced dimensionality data
```

```
data("iris")
```

data("iris")
head(iris)
head(iris)
irisCent <- iris %>% transmute(sL=Sepal.Length-mean(Sepal.Length),
irisCent <- iris %>% transmute(sL=Sepal.Length-mean(Sepal.Length),
sW=Sepal.Width-mean(Sepal.Width),
sW=Sepal.Width-mean(Sepal.Width),
pL=Petal.Length-mean(Petal.Length),
pL=Petal.Length-mean(Petal.Length),
pW=Petal.Width-mean(Petal.Width))
pW=Petal.Width-mean(Petal.Width))
ic <- cov(irisCent)
ic <- cov(irisCent)

use eigen() function to compute eigenvalues and eigenvectors

ieigen <- eigen(ic)
ie <- ieigen$values
iv <- ieigen$vectors
row.names(iv) <- names(iris %>% select(-Species))
colnames(iv) <- paste0(rep("PC",ncol(iv)),1:ncol(iv)) \# or
sprintf("PC%d",1:4)

Fraction of the total variance

fr <- ie/sum(ie)

Choose number of dimensionality

threshold <- function(x, th) {
sum <- 0
seq <- 0
for (i in 1:length(x)) {
sum <- sum + x[i]
if (sum >= th) {
seq <- i
break
}
}
return(seq)
}
threshold(x=fr, 0.95)

```

\section*{Algorithm 7.1: Principal Component Analysis}

PCA ( \(\mathbf{D}, \alpha\) ):
\(1 \mu=\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} / /\) compute mean
\({ }_{2} \mathbf{Z}=\mathbf{D}-\mathbf{1} \cdot \boldsymbol{\mu}^{T} / /\) center the data
\(3 \boldsymbol{\Sigma}=\frac{1}{n}\left(\mathbf{Z}^{T} \mathbf{Z}\right) / /\) compute covariance matrix
\(4\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{d}\right)=\) eigenvalues \((\boldsymbol{\Sigma}) / /\) compute eigenvalues
\({ }_{5} \mathbf{U}=\left(\begin{array}{llll}\mathbf{u}_{1} & \mathbf{u}_{2} & \cdots & \mathbf{u}_{d}\end{array}\right)=\) eigenvectors \((\boldsymbol{\Sigma}) / /\) compute eigenvectors
\({ }_{6} f(r)=\frac{\sum_{i=1}^{r} \lambda_{i}}{\sum_{i=1}^{d} \lambda_{i}}\), for all \(r=1,2, \cdots, d / /\) fraction of total variance
7 Choose smallest \(r\) so that \(f(r) \geq \alpha / /\) choose dimensionality
\(\mathbf{U}_{r}=\left(\begin{array}{llll}\mathbf{u}_{1} & \mathbf{u}_{2} & \cdots & \mathbf{u}_{r}\end{array}\right) / /\) reduced basis
9 \(\mathbf{A}=\left\{\mathbf{a}_{i} \mid \mathbf{a}_{i}=\mathbf{U}_{r}^{T} \mathbf{x}_{i}\right.\), for \(\left.i=1, \cdots, n\right\} / /\) reduced dimensionality data
```

barplot(
fr,
ylim = c(0, 1),
col = "sandybrown",
xlab = "Principal Component",
ylab = "Explained Variances",
axes = TRUE
)
axis(1, c(0.7, 1.9, 3.1, 4.3),
labels = sprintf("PC%d", 1:4))
lines(cumsum(fr), type = 's', col = "darkgreen")
legend(
x = 2.5,
y = 0.5,
legend = c("Explained Variance", "Cumulative
Explained Variance")
pch = c(15, 15),
col = c("sandybrown", "darkgreen")
bty = 'n'
)

```

```

Algorithm 7.1: Principal Component Analysis
$\operatorname{PCA}(\mathbf{D}, \alpha)$:
$1 \mu=\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} / /$ compute mean
$\mathbf{2} \mathbf{Z}=\mathbf{D}-\mathbf{1} \cdot \boldsymbol{\mu}^{T} / /$ center the data
${ }_{3} \boldsymbol{\Sigma}=\frac{1}{n}\left(\mathbf{Z}^{T} \mathbf{Z}\right) / /$ compute covariance matrix
$4\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{d}\right)=$ eigenvalues $(\boldsymbol{\Sigma}) / /$ compute eigenvalues
${ }_{5} \mathbf{U}=\left(\begin{array}{llll}\mathbf{u}_{1} & \mathbf{u}_{2} & \cdots & \mathbf{u}_{d}\end{array}\right)=$ eigenvectors $(\boldsymbol{\Sigma}) / /$ compute eigenvectors
$f(r)=\frac{\sum_{i=1}^{r} \lambda_{i}}{\sum_{i=1}^{d} \lambda_{i}}$, for all $r=1,2, \cdots, d / /$ fraction of total variance
Choose smallest r so that $f(r) \geq \alpha / /$ choose dimensionality
$\mathbf{U}_{r}=\left(\begin{array}{llll}\mathbf{u}_{1} & \mathbf{u}_{2} & \cdots & \mathbf{u}_{r}\end{array}\right) / /$ reduced basis
$\mathbf{A}=\left\{\mathbf{a}_{i} \mid \mathbf{a}_{i}=\mathbf{U}_{r}^{T} \mathbf{x}_{i}\right.$, for $\left.i=1, \cdots, n\right\} / /$ reduced dimensionality data

```

\section*{Exercise:}
1. Try three datasets: mpg, BostonHousing (mlbench), BreastCancer (mlbench) on two scale methods: a) mean=0, b)mean=0, variance=1.
2. Compare to the built-in PCA function prcomp()

\section*{PCA VS Linear \\ Discriminant Analysis}

© Ricardo Gutierrez-Osuna
5.PCA: Pros and Cons

\section*{PCA Pros and Cons}

\section*{Pros}
1. Good performance on processing speed
2. Reflects intuition on the data
3. Efficient reduction in size of data

\section*{Cons}
1. Doesn't consider class separability since it doesn't take into account the class labels
2. PCA simply performs a coordinate rotation that aligns the transformed axes with the directions of maximum variance
3. There is no guarantee that the directions of maximum variance will contain good features for discrimination
- PCA cannot recognize the class lables

\section*{Resources}

\section*{Resource}

Textbook:
Galit Shmueli, Peter C. Bruce, Inbal Yahav, Nitin R. Patel, Kenneth C. Lichtendahl Jr., Data Mining for Business Analytics: Concepts, Techniques, and Applications in R (DMBA), Wiley, 1st Edition, ISBN-10: 1118879368, ISBN-13: 978-1118879368.

\section*{Additional Textbooks:}

R For Data Science (open license, R4DS), Wickham, Hadley, and Garrett Grolemund
R Markdown (open license, RMD), Xie, Yihui, et al.
James, Gareth, et al. An Introduction to Statistical Learning: with Applications in R. Springer, 2017. (open license, ISL)
Mohammed J. Zaki, Wagner Meira, Jr., Data Mining and Analysis: Fundamental Concepts and Algorithms, Cambridge University Press, May 2014. ISBN: 9780521766333.
David Hand, Heikki Mannila, Padhraic Smyth. Principles of Data Mining, The MIT Press, 2001, ISBN-10: 026208290X, ISBN-13: 978-0262082907.

Tan, Pang-Ning, et al. Introduction to Data Mining (DM). Pearson Education, 2006.

\section*{Materials}
@Victor Lavrenko
Lu, Z. (2022). Data Visualization Tutorial in R. zhenyuanlu.github.io.```


[^0]:    Mohammed J. Zaki, Wagner Meira, Jr., Data Mining and Analysis: Fundamental Concepts and Algorithms, Cambridge University Press

