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1.Curse of dimensionality
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True vs. Observed Dimensionality

ID Observed Value 
(x1) - Height (cm)

Predictive Value (y) –
Weight (kg)

1 170 65

2 187 80

3 175 75

4 160 45

5 159 56

What is the dimensionality of this dataset?

Weight

Height
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True vs. Observed Dimensionality

ID Observed Value 
(x1) - Height (cm)

Predictive Value (y) –
Weight (kg)

1 170 65

2 187 80

3 175 75

4 160 45

5 159 56

What is the dimensionality of this dataset?

Weight

Height

x2: # of your waist (cm)
x3: # of exams you have today
x4: # of jokes you heard today
x5: # of days left until summer

Features observed over time:

Observed Dimensionality: 6
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ID Observed 
Value (x1) -
Height (cm)

Observed 
value (𝒙𝟐) -
Waist (cm)

Predictive 
Value (y) –
Weight (kg)

1 170 67 65

2 187 86 80

3 175 76 75

4 160 59 45

5 159 66 56

True vs. Observed Dimensionality

True Dimensionality: 3
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Curse of Dimensionality

20x20 bitmap 

True Dimensionality
- 20x20 bitmap: {0, 1}400 potential events
- The handwritten number THREE may be only 

240 events

...

1x400

Example:
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Curse of Dimensionality

20x20 bitmap 

- 20x20 bitmap: {0, 1}400 potential events
- Randomly sampling 2400 events

...

1x400

Example:
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Dimensionality (d) increases, and fewer observations (n) per region
In the case of d>>n
- 1d: 3 regions
- 2d: 32 regions
- 100d – well…

Curse of Dimensionality

Data mining/Machine learning methods are statistical
- Use numbers to build up the predictor f(x)
- Use categorical variables to classify: {0, 1}

x1

x1

x2

x1

x2

x3

x3
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2.Methods of dealing with 

high dimensionality
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Assumption on dimensions
- Independence: count along each 

dimension, e.g. Naïve bayes. 
When counting the frequency of 
x1 ignore the x2

- Smoothness: nearby region 
should have similar distribution of 
classes

- Symmetry: e.g. invariance to 
order of the dimensions: order 
doesn’t matter

Methods

Use domain knowledge
- Feature engineering
- e.g. Testosterone -> Muscle building

x1

x2

x1

x1

x2

x1

x2

Reduce the dimensionality
- Create a new set of variables

Dealing with high dimensionality
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Feature selection

- Select a subset of the original dimension: 
𝑥1, 𝑥2, 𝑥3, 𝑥4 𝑥5

- Discriminative: Select class as predictor

Dimensionality Reduction

Feature extraction
- Construct a new set of dimensions: 

𝐸𝑖 = 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4 𝑥5)

𝐸1, 𝐸2, 𝐸3

𝑥1, 𝑥2, 𝑥3, 𝑥4 𝑥5

- e.g. Linear combination of original dimensions: PCA 
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3.Principal components 

analysis (PCA)
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One of the most beautiful ALGORITHMs
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The goal of PCA is to find a new set of dimensions 
(attributes) that better captures the variability of the data. 

Principal Components Analysis (PCA)
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Some Math
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Standard Basis Vector
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d-dimensional Cartesian coordinate space is specified via the d unit 
vectors, called the standard basis vectors, along each of the axes. The j-th
standard basis vector 𝑒𝑗 is the d-dimensional unit vector whose j-th
component is 1 and the rest of the components are 0

𝑒𝑗 = 0, 1𝑗 , … , 0
𝑇

Any other vector in ℝ𝑑 can be written as linear combination of the 
standard basis vectors. For example, each of the points xi can be written as 
the linear combination

𝑥𝑖 = 𝑥𝑖1𝑒1 + 𝑥𝑖2𝑒2 +⋯+ 𝑥𝑖𝑑𝑒𝑑 =

𝑗=1

𝑑

𝑥𝑖𝑗𝑒𝑗

where the scalar value 𝑥𝑖𝑗 is the coordinate value along the j-th axis or attribute



Standard Basis Vector
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For example: 

𝑥1 = 5.9, 3.0, 4.2

𝑥1 = 5.9𝑒1 + 3.0𝑒2 + 4.2𝑒3 = 5.9
1
0
0

+ 3.0
0
1
0

+ 4.2
0
0
1

=
5.9
3.0
4.2

Consider the Iris data



Geometric View
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For example: 

𝑥1 = 5.9, 3.0
𝑥1 ∈ ℝ2

𝑥1 = 5.9, 3.0, 4.2
𝑥1 ∈ ℝ3



Original Points to New Coordinates 
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Original Points to New Coordinates 
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x1

x2

𝑢1

𝑢2

x1

x2

𝑢1

𝑢2

Original Basis Optimal Basis
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𝑥 = 𝑎1𝑢1 + 𝑎2𝑢2 +⋯+ 𝑎𝑑𝑢𝑑

𝑥 = 𝑈𝑎

𝑈 =
|
𝑢1
|

|
𝑢2
|
⋯

|
𝑢𝑑
|

Original Points to New Coordinates 
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𝑥 = 𝑈𝑎
𝑈𝑇𝑥 = 𝑈𝑇𝑈𝑎
𝑎 = 𝑈𝑇𝑥

Original Points to New Coordinates 
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Original Points to New Coordinates 

For example: 

Original Basis Optimal Basis

Mohammed J. Zaki, Wagner Meira, Jr., 2014
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𝑥 = 𝑈𝑎
𝑎 = 𝑈𝑇𝑥

Original Points to New Coordinates 

For example: 

𝑢1 =
−0.390
0.089
−0.916

𝑢2 =
−0.639
−0.742
0.200

𝑢3 =
−0.663
0.664
0.346

The new coordinates of the centered point
𝑥 = −0.343, −0.754, 0.241 𝑇 can be computed as:

𝑎 = 𝑈𝑇𝑥 =
−0.390 0.089 −0.916
−0.639 −0.742 0.200
−0.663 0.664 0.346

−0.390
0.089
−0.916

=
−0.154
0.828
−0.190

𝑥 = −0.154𝑢1 + 0.828𝑢2 − 0.190𝑢3

x can be written as the linear combination

Mohammed J. Zaki, Wagner Meira, Jr., 2014



1. Find the first dimension to capture as much of the variability as possible
2. The second dimension is orthogonal to the first, and subject to that constraint, captures as much of the remaining variability. 
3. And so on…until the dth dimension. 

PCA

x1

x2a.
c.

Find the greatest variability

PC1

PC2
e.

Project original points to the 
new dimensions and 
choose PCs

b.

Centered

IE6600 Visualization and Computation for Analytics, NEU | 
©2022 Zhenyuan Lu

PC1PC2
d.

Compute eigenvalues and 
eigenvector



Example:
We have a 2 dimensional data here to project all the data 
points to 1 dimension axis 𝑢1, 𝑢2 : {x1, x2} -> 𝑢1, 𝑢2

The data points in 𝑢1-space are more expanded (greater 
variability) than in 𝑢2-space.

PCA Why find greatest variability?

x1

x2

𝑢1
𝑢21. Points are close in 𝑢2-space but far in (x1, 

x2)-space which is not so ideal to represent 
the original dataset

2. The overall distances in 𝑢1-space, with the 
highest variability, can represent the original 
distribution and variability

IE6600 Visualization and Computation for Analytics, NEU | 
©2022 Zhenyuan Lu



1. Center the data at zero: 𝑍 = 𝐷 − 1 ⋅ 𝜇𝑇

PCA Find mean and center the data

Mohammed J. Zaki, Wagner Meira, Jr., Data Mining and Analysis: Fundamental Concepts and Algorithms, Cambridge University Press
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1. Center the data at zero: 𝑍 = 𝐷 − 1 ⋅ 𝜇𝑇

2. Covariance matrixσ =
1

𝑛
(𝑍𝑇𝑍)

- covariance of 𝑥1, 𝑥2: 
- 𝑥1, 𝑥2increase or decrease together or when one decreases the other one increases

PCA Direction

2.0 0.8
0.8 0.6

x1        x2 
x1       
x2 

𝑐𝑜𝑣 𝑥1, 𝑥2 = 0.8
Say we have two sets of 
attributes 𝜎1

2 = 2, 𝜎2
2 = 0.6

x1

x2

𝑢2𝑢1

3. Multiply a vector −1
1

by 2.0 0.8
0.8 0.6

:

a. 
2.0 0.8
0.8 0.6

−1
1

=
−1.2
−0.2

Example

𝑐𝑜𝑣 𝑥𝑖 , 𝑥𝑗 =
𝑥𝑖−𝜇𝑖

𝑇(𝑥𝑗−𝜇𝑗)

𝑛
,  After data centered: 𝜇 = 0, 𝑐𝑜𝑣 𝑥𝑖 , 𝑥𝑗 =

𝑥𝑖
𝑇𝑥𝑗

𝑛

b. 
2.0 0.8
0.8 0.6

−1.2
−0.2

=
−2.6
−1.0

c. 
2.0 0.8
0.8 0.6

−2.6
−1.0

=
−6.0
−2.7

→
−14.1
−6.4

→
−33.3
−15.1

Slope: 0.45      0.454      0.454

Towards the greatest variance direction

−1
1

−1.2
−0.2

−2.6
−1.0

−6.0
−2.7
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PCA Direction

4. Look for a vector always keep in the same direction: σ𝑢 = 𝜆𝑢
- u : eigenvectors
- σ: covariance matrix 
- 𝜆: scalar variable
- Principal components = eigenvectors with largest eigenvalues

Towards the greatest variance direction
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x1

x2

𝑢2𝑢1



PCA Find eigenvalues, eigenvector, and PCs

1. Find eigenvalues by solving : σ𝒖 = 𝝀𝒖→ σ − 𝝀𝑰 = 𝟎. (𝑵𝑶𝑻𝑬: 𝑫𝒆𝒕𝒆𝒓𝒎𝒊𝒏𝒂𝒏𝒕 𝒐𝒇𝒎𝒂𝒕𝒓𝒊𝒙 𝑨: 𝑨 )

-
2.0 − 𝜆 0.8
0.8 0.6 − 𝜆

= 2 − 𝜆 0.6 − 𝜆 − 0.8 ∗ 0.8 = 𝜆2 − 2.6𝜆 + 0.56 = 0

- 𝜆1, 𝜆2 =
1

2
2.6 ± 2.62 − 4 ∗ 0.56 = 2.36, 0.23

2. Find 𝒊𝒕𝒉 eigenvector by solving: σ𝒖𝒊 = 𝝀𝒊𝒖𝒊

-
2.0 0.8
0.8 0.6

𝑢11
𝑢12

= 2.36
𝑢11
𝑢12

→
2𝑢11 + 0.8𝑢12 = 2.36𝑢11
0.8𝑢11 + 0.6𝑢12 = 2.36𝑢12

→ 𝑢11 = 2.2𝑢12→ 𝑢1~
2.2
1

, 

→ make ||𝑢1|| = 1, 𝑢1
1

2.22+1
, 𝑡ℎ𝑒𝑛 𝑢1 =

0.91
0.41

, slope = 0.454

-
2.0 0.8
0.8 0.6

𝑢21
𝑢22

= 0.23
𝑢21
𝑢22

→ 𝑡ℎ𝑒𝑛 𝑢2 =
−0.41
0.91

3. 1𝑠𝑡 𝑃𝐶: 0.91
0.41

, 2𝑛𝑑 𝑃𝐶: −0.41
0.91

@ Victor Lavrenko
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PCA Fraction of total variance, and choose dimensionality 

Often we may not know how many dimensions, 𝑟, to use for a good approximation.
One criteria for choosing 𝑟 is to compute the fraction of the total variance captured
by the first 𝑟 principal components, computed as

𝑓 𝑟 =
𝜆1 + 𝜆2 +⋯+ 𝜆𝑟
𝜆1 + 𝜆2 +⋯+ 𝜆𝑑

=
σ𝑖=1
𝑟 𝜆𝑖

σ𝑖=1
𝑑 𝜆𝑖

=
σ𝑖=1
𝑟 𝜆𝑖

𝑣𝑎𝑟(𝐷)

Given a certain desired variance threshold, say 𝛼, starting from the first principal component, 
we keep on adding additional components, and stop at the smallest value 𝑟, for which 𝑓 𝑟 ≥
𝛼 (𝛼 can be 0.9, 0.95 as purposes). 

In practice, 𝛼 is usually set to 0.9 or higher, so that the reduced dataset captures at least 90% 
of the total variance.
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Mohammed J. Zaki, Wagner Meira, Jr., Data Mining and Analysis: Fundamental Concepts and Algorithms



PCA
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PC1PC2
d.

Compute eigenvalues and 
eigenvector

x1

x2a.

Compute 
the mean

b.

Center the data, make 
mean = 0

c.

Compute the covariance 
matrix
Find the greatest variability

PC1

PC2
e.

Project original points to the 
new dimensions and 
choose PCs

Sometimes you may also 
scale variance to 1 



Novembre, John et al. “Genes mirror geography within Europe.” Nature vol. 456,7218 (2008): 
98-101. doi:10.1038/nature07331
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Question

=
0.681 −0.039 1.265
−0.039 0.187 −0.320
1.265 −0.32 3.092

𝜆1 = 3.662 𝜆2 = 0.239 𝜆3 = 0.059

𝑢1 =
−0.39
0.089
−0.916

𝑢2 =
−0.639
−0.742
0.200

𝑢3 =
−0.663
0.664
0.346

What is the total variance?
What is the fraction of total variance for each PC?
If let 𝛼 = 0.95 how many PCs we need to keep?
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4.PCA Implementation in R
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1 

2 

data("iris")

head(iris)

1 

2 

3 

4 

irisCent <- iris %>% transmute(sL=Sepal.Length-mean(Sepal.Length),

sW=Sepal.Width-mean(Sepal.Width),

pL=Petal.Length-mean(Petal.Length), 

pW=Petal.Width-mean(Petal.Width))

1 ic <- cov(irisCent)

1 

2 

3 

4 

5 

6 

# use eigen() function to compute eigenvalues and eigenvectors

ieigen <- eigen(ic)

ie <- ieigen$values

iv <- ieigen$vectors

row.names(iv) <- names(iris %>% select(-Species))

colnames(iv) <- paste0(rep("PC",ncol(iv)),1:ncol(iv)) # or 

sprintf("PC%d",1:4)

1 

2 

# Fraction of the total variance

fr <- ie/sum(ie)

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

# Choose number of dimensionality

threshold <- function(x, th) {

sum <- 0

seq <- 0

for (i in 1:length(x)) {

sum <- sum + x[i]

if (sum >= th) {

seq <- i

break

}

}

return(seq)

}

threshold(x=fr, 0.95)
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1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

barplot(

fr,

ylim = c(0, 1),

col = "sandybrown",

xlab = "Principal Component",

ylab = "Explained Variances",

axes = TRUE

)

axis(1, c(0.7, 1.9, 3.1, 4.3),

labels = sprintf("PC%d", 1:4))

lines(cumsum(fr), type = 's', col = "darkgreen")

legend(

x = 2.5,

y = 0.5,

legend = c("Explained Variance", "Cumulative 

Explained Variance"),

pch = c(15, 15),

col = c("sandybrown", "darkgreen"),

bty = 'n'

)

1 

2 

3 

biPCA <- prcomp(iris[1:4], scale = TRUE)

biPCA$sdev^2/sum(biPCA$sdev^2)

biPCA$rotation
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Exercise: 
1. Try three datasets: mpg, BostonHousing (mlbench), 

BreastCancer (mlbench) on two scale methods: a) 
mean=0, b)mean=0, variance=1. 

2. Compare to the built-in PCA function prcomp()



PCA VS Linear 

Discriminant Analysis
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© Ricardo Gutierrez-Osuna

LDA

PCA
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5.PCA: Pros and Cons
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PCA Pros and Cons

Pros

1. Good performance on processing speed

2. Reflects intuition on the data

3. Efficient reduction in size of data

Cons

1. Doesn’t consider class separability since it doesn’t take into account the 
class labels

2. PCA simply performs a coordinate rotation that aligns the transformed 
axes with the directions of maximum variance

3. There is no guarantee that the directions of maximum variance will 
contain good features for discrimination

- PCA cannot recognize the class lables
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Resources
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Resource

Textbook:

Galit Shmueli, Peter C. Bruce, Inbal Yahav, Nitin R. Patel, Kenneth C. Lichtendahl Jr., Data Mining for Business 
Analytics: Concepts, Techniques, and Applications in R (DMBA), Wiley, 1st Edition，ISBN-10: 1118879368, ISBN-13: 
978-1118879368.

Additional Textbooks: 

R For Data Science (open license, R4DS), Wickham, Hadley, and Garrett Grolemund

R Markdown (open license, RMD), Xie, Yihui, et al.

James, Gareth, et al. An Introduction to Statistical Learning: with Applications in R. Springer, 2017. (open license, ISL)

Mohammed J. Zaki, Wagner Meira, Jr., Data Mining and Analysis: Fundamental Concepts and Algorithms, Cambridge 
University Press, May 2014. ISBN: 9780521766333.

David Hand, Heikki Mannila, Padhraic Smyth. Principles of Data Mining, The MIT Press, 2001， ISBN-10: 026208290X, 
ISBN-13: 978-0262082907.

Tan, Pang-Ning, et al. Introduction to Data Mining (DM). Pearson Education, 2006.

Materials

@Victor Lavrenko

Lu, Z. (2022). Data Visualization Tutorial in R. zhenyuanlu.github.io.
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https://r4ds.had.co.nz/
https://bookdown.org/yihui/rmarkdown/
http://faculty.marshall.usc.edu/gareth-james/ISL/

