
IE6600 Computation and Visualization
for Analytics

BasicR

Zhenyuan Lu

(updated: 2022-05-12)

Image credit: RStudio

Image credit: Shiny,
RStudio

© 2021 Zhenyuan Lu
2 / 90

https://www.rstudio.com/wp-content/uploads/2018/10/RStudio-Logo-Flat.png
https://github.com/rstudio/hex-stickers/blob/master/PNG/shiny.png

Basic R

© 2021 Zhenyuan Lu
3 / 90

A sweet note
For your convenience, I have generated all the slides by RMarkdown in RStudio,

which means all the original code syntax/chunk won't be messed up by different
presentation programs or software.

© 2021 Zhenyuan Lu
4 / 90

Another sweet note
I won't use beamer style slides...which makes me headache and sleepy...

Beamer Style Slides as follows:

© 2021 Zhenyuan Lu
5 / 90

Tip: Update R language in Rstudio
For windows only:

install.pacages("installr")
library(installr)
updateR()

For mac: Go to R project

© 2021 Zhenyuan Lu
6 / 90

https://cloud.r-project.org/bin/macosx/

Packages needed
You’ll also need to install some R packages. An R package is a collection of
functions, data, and documentation that extends the capabilities of base R.

install.packages("tidyverse")

© 2021 Zhenyuan Lu

[1] Wickham, Hadley, and Garrett Grolemund. R For Data Science. OReilly, 2017.

7 / 90

http://r-pkgs.had.co.nz/

Packages needed (cont'd)
library(tidyverse)

-- Attaching packages --------------------------------------- tidyverse 1.3.1 --

v ggplot2 3.3.5 v purrr 0.3.4
v tibble 3.1.6 v dplyr 1.0.7
v tidyr 1.1.4 v stringr 1.4.0
v readr 2.1.0 v forcats 0.5.1

-- Conflicts -- tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()

This tells you that tidyverse is loading the ggplot2, tibble, tidyr, readr, purrr,
stringr, forcats, and dplyr packages. These are considered to be the core of the
tidyverse because you’ll use them in almost every analysis.

© 2021 Zhenyuan Lu

[1] Wickham, Hadley, and Garrett Grolemund. R For Data Science. OReilly, 2017.

8 / 90

http://r-pkgs.had.co.nz/

Function conflicts (cont'd)
library(tidyverse)

This also tells you that there are two functions from dplyr having conflicts with
stats.
You'll use dplyr:: or stats:: to specific the function from dplyr.
This is a
very common issue students may have.

© 2021 Zhenyuan Lu

[1] Wickham, Hadley, and Garrett Grolemund. R For Data Science. OReilly, 2017.

9 / 90

http://r-pkgs.had.co.nz/

Installation of R Markdown
There are many other excellent packages that are not part of the tidyverse.

Install r markdown from CRAN
install.packages("rmarkdown") # Conversion Tool
Or if you want to test the development version,
install from GitHub
if (!requireNamespace("devtools"))
 install.packages('devtools')
devtools::install_github('rstudio/rmarkdown')

© 2021 Zhenyuan Lu

[1] Wickham, Hadley, and Garrett Grolemund. R For Data Science. OReilly, 2017.

[2] Xie, Yihui, et al. R Markdown. CRC Press, 2019.

10 / 90

http://r4ds.had.co.nz/
https://bookdown.org/yihui/rmarkdown/

Installation of R Markdown (cont'd)
Be sure to also install TinyTex for those who have not installed LaTex before.

install.packages("tinytex")
tinytex::install_tinytex() # install TinyTeX

If you have any issues with R Markdown, feel free to check: Q&A for IE6600

© 2021 Zhenyuan Lu

[1] Wickham, Hadley, and Garrett Grolemund. R For Data Science. OReilly, 2017.

[2] Xie, Yihui, et al. R Markdown. CRC Press, 2019.

11 / 90

http://r4ds.had.co.nz/
https://bookdown.org/yihui/rmarkdown/

Packages needed (cont'd)
install.packages("ggplot2") # Visualization Tool, install "tidyverse" instead
install.packages("nycflights13") #Airline Flights data
install.packages("gapminder") #world development data

or if you would like to make your own packages for supporting HUMAN BEINGS
DEVELOPMENT by learning R Packages2

© 2021 Zhenyuan Lu

[1] Wickham, Hadley, and Garrett Grolemund. R For Data Science. OReilly, 2017.

[2] Wickham, Hadley. R Packages. OReilly Media, 2015.

12 / 90

http://r-pkgs.had.co.nz/
http://r4ds.had.co.nz/
http://r-pkgs.had.co.nz/

Tip: Check if packages installed
libs <- c("ggplot2", "nycflights13", "gapminder")

x <- sapply(libs, function(x)
 if (!require(
 x,
 character.only = T,
 warn.conflicts = F,
 quietly = T
))
 install.packages(x))

© 2021 Zhenyuan Lu
13 / 90

R Programming

R for Data Science (open license)
Cookbook for R (open license)
Text Mining with R (open license)
R for Everyone (library access)

Documentation

R Markdown (open license)

R Visualization

ggplot2 for static Viz.
plotly for interactive Viz.
Shiny for web app

Additional

Advanced R (open license)
R Packages (open license)
R Cheatsheets List(very useful)

References

© 2021 Zhenyuan Lu
14 / 90

http://r4ds.had.co.nz/
http://www.cookbook-r.com/
https://www.tidytextmining.com/
https://onesearch.library.northeastern.edu/permalink/f/365rt0/NEU_ALMA51284955070001401
https://bookdown.org/yihui/rmarkdown/
https://ggplot2.tidyverse.org/
https://plot.ly/r/getting-started/
https://shiny.rstudio.com/tutorial/
http://adv-r.had.co.nz/
http://r-pkgs.had.co.nz/
https://www.rstudio.com/resources/cheatsheets/

Goal
The goal of the class IE6600 is to give you a solid foundation for most of the
common data science tools in R and Tableau, and for the preparation to the
advanced modeling, machine learning, and other data science fields. We will
follow the following model for the rest of the semester.

© 2021 Zhenyuan Lu
15 / 90

1 plus 1 *
1+1

[1] 2

Another math
1/(1+1)

[1] 0.5

Basic Math
R is a powerful tool for all manner of calculation since it is developed up by
statisticians not programmers, which also means it is very friendly for data
manipulation and scientific computations.

[*]Please keep a good habit of writing down the descriptions/comments before
each essential script, although we know most of you don’t like doing it.

© 2021 Zhenyuan Lu
16 / 90

Functions in R
Function is an object. R has a large number of in-built and third-party functions.

Example
Let's draw a lottery from 10 numbers.
If it's one of 1 to 9 numbers, which
means my students love me.

if (sample(10, 1)%in%c(1:9)) {
 print("My students love me")
} else{
 "They hate me"
}

[1] "My students love me"

We will mention how to build up a function in next chapter

© 2021 Zhenyuan Lu
17 / 90

Variables
Variables are an integral part of any programming language and R offers a
great deal of flexibility.

Unlike statically typed languages such as C++, R does not require variable
types to be declared. A variable can take on any available data type.

It can also hold any R object such as a function, the result of an analysis or a
plot. A single variable can at one point hold a number, then later hold a
character and then later a number again.

© 2021 Zhenyuan Lu

Lander, Jared P.R For Everyone - Advanced Analytics and Graphics. Pearson Education (Us),
2017.

18 / 90

Variables Assignments
The valid assignment operators are <- and = with the first being preferred

x <- 13 # Recommended
x

[1] 13

x = 13
x

[1] 13

© 2021 Zhenyuan Lu

[1] R is also friendly for who is familiar with SQL where a single equal sign(=) tests for equality

[2] Recommended to use <- instead of =

19 / 90

Variables Assignments (cont'd)
assign("x", 13)
x

[1] 13

© 2021 Zhenyuan Lu

[1] R is also friendly for who is familiar with SQL where a single equal sign(=) tests for equality

[2] Recommended to use <- instead of =

20 / 90

#Store 13 to the variable x
x <- 13

#Removing x
rm(x)
#The x is gone
x

Error in eval(expr, envir, enclos): object 'x' not foun

Removing Variables
rm() function for removing variables

© 2021 Zhenyuan Lu
21 / 90

Variables, Case Sensitive
Variable names are case sensitive, which can trip up people coming from a
language like SQL or Visual Basic.

#Save 1 to variables
variables <- 1
variables

[1] 1

#not for Variables due to the case sensitive
Variables

Error in eval(expr, envir, enclos): object 'Variables' not found

© 2021 Zhenyuan Lu

Lander, Jared P.R For Everyone - Advanced Analytics and Graphics. Pearson Education (Us),
2017.

22 / 90

Data Types
There are numerous data types in R that store various kinds of data. The four
main types of data most likely to be used are

numeric (double or integer, most of the time R won't differentiate between
integer or double)
character (string)
Date (time-based)
logical (TRUE/FALSE)

Show data set in R

data()

© 2021 Zhenyuan Lu

Lander, Jared P.R For Everyone - Advanced Analytics and Graphics. Pearson Education (Us),
2017.

23 / 90

Data Types (cont'd)
If you want to check the type of data contained in a variables, class function can
be used for that.

x <- 13
#Check the data type of x
class(x)

[1] "numeric"

© 2021 Zhenyuan Lu

Lander, Jared P.R For Everyone - Advanced Analytics and Graphics. Pearson Education (Us),
2017.

24 / 90

Numeric
As expected, R excels at running numbers, so numeric data is the most common
type in R. The most commonly used numeric data is numeric. This is similar to a
float or double in other languages.

Testing whether a variable is numeric is done with the function is.numeric.

x <- 13
#Testing if x is numeric
is.numeric(x)

[1] TRUE

© 2021 Zhenyuan Lu

Lander, Jared P.R For Everyone - Advanced Analytics and Graphics. Pearson Education (Us),
2017.

25 / 90

Numeric (cont'd)
To store a integer to the variable, be sure to add "L" after the numeric data.

#Save 3 to the x
x <- 3
is.integer(x)

[1] FALSE

#Save 3 as an integer to the x
x <-3L
is.integer(x)

[1] TRUE

is.numeric(x)

[1] TRUE

© 2021 Zhenyuan Lu
26 / 90

Character
R has two primary ways of handling character data: character and factor.

Store "RStudio" to x as character data
x <- "RStudio"
x

[1] "RStudio"

Store "RStudio" to x as factor data by using factor function*
x <- factor("RStudio")
x <- factor(c("a", "c","D"))
x <- factor(c(1,2,3))
x

[1] 1 2 3
Levels: 1 2 3

© 2021 Zhenyuan Lu
27 / 90

Character - length
Find the length of variable x
x <- "RStudio"
nchar(x)

[1] 7

nchar can only be used for character and numeric data
x <- factor("RStudio")
nchar(x)

Error in nchar(x): 'nchar()' requires a character vector

Find the length of numeric variable y
y <- 345
nchar(y)

[1] 3

© 2021 Zhenyuan Lu
28 / 90

Date
Dealing with dates and times can be difficult in any language, and to further
complicate matters R has numerous different types of dates. The most useful are
Date and POSIXct. Date stores just a date while POSIXct stores a date and time.
Both objects are actually represented as the number of days (Date) or seconds
(POSIXct) since January 1, 1970.

© 2021 Zhenyuan Lu

Lander, Jared P.R For Everyone - Advanced Analytics and Graphics. Pearson Education (Us),
2017.

29 / 90

#Store "2020-01-15" as date
date <- as.Date("2020-01-15")
as.numeric(date)

[1] 18276

#Test the data type of date
class(date)

[1] "Date"

#Convert the date to numeric
as.numeric(date)

[1] 18276

Date (cont'd)
How to save date data

© 2021 Zhenyuan Lu
30 / 90

Question

 as.numeric(2020-01-15)

© 2021 Zhenyuan Lu
31 / 90

Data Wrangling (we will mention this
chapter later)
install.packages("stringr") # for string
install.packages("lubridate") # for date
install.packages("forcats") # for factor

© 2021 Zhenyuan Lu

Wickham, Hadley, and Garrett Grolemund. R For Data Science. OReilly, 2017.

32 / 90

x <- 13
is.numeric(x)

[1] TRUE

x1 <- "I am awesome"
is.numeric(x1)

[1] FALSE

is.character(x1)

[1] TRUE

is.na(x1)

[1] FALSE

Logical
Logical is a way of representing data that can be either TRUE or FALSE.

© 2021 Zhenyuan Lu
33 / 90

Logical (cont'd)
TRUE/FALSE

x <- TRUE
class(x)

[1] "logical"

is.logical(x)

[1] TRUE

© 2021 Zhenyuan Lu
34 / 90

Logical (cont'd)
Numerically, TRUE is the same as 1 and FALSE is the same as 0.

TRUE * 5

[1] 5

c(TRUE, TRUE, TRUE)*1

[1] 1 1 1

FALSE * 5

[1] 0

© 2021 Zhenyuan Lu

Lander, Jared P.R For Everyone - Advanced Analytics and Graphics. Pearson Education (Us),
2017.

35 / 90

does 1 equal 1?
1 == 1

[1] TRUE

does 1 not equal 1?
1 != 1

[1] FALSE

is 1 less than 1?
1 < 1

[1] FALSE

is 1 less than or equal to 2?
1 <= 2

[1] TRUE

is the length of
'i' equal to 'IE6600'?
"i" == "IE6600"

[1] FALSE

is ' i' less than 'IE6600'?
"i" < "IE6600"

[1] TRUE

Logical (cont'd)
Logical also can do the comparison between two numbers, or characters

© 2021 Zhenyuan Lu
36 / 90

Vector
A vector is a collection of elements, all of the same type. For instance,
c(1, 3, 2, 1, 5) is a vector consisting of the numbers 1, 3, 2, 1, 5, in that order.
Similarly, c("R", "Excel", "SAS", "Excel") is a vector of the character elements "R,"
"Excel," "SAS" and "Excel." A vector cannot be of mixed type.

Vectors do not have a dimension, meaning there is no such thing as a column
vector or row vector. These vectors are not like the mathematical vector where
there is a difference between row and column orientation.

Column or row vectors can be represented as one-dimensional matrices, we
will discuss this in the next section of advanced data structures.

© 2021 Zhenyuan Lu

Lander, Jared P.R For Everyone - Advanced Analytics and Graphics. Pearson Education (Us),
2017.

37 / 90

Vector (cont'd)
Using c() function is the most common way to create a vector

x <- c("IE6600", "Data", "Visualization")
x

[1] "IE6600" "Data" "Visualization"

y <- c(2,3)
y

[1] 2 3

class(y)

[1] "numeric"

© 2021 Zhenyuan Lu
38 / 90

Using c() function is the most
common way to create a vector

x <- c(1,2,3,4,5)
x

[1] 1 2 3 4 5

y <- c(1:5)
y

[1] 1 2 3 4 5

You may also want to do some
manipulation for your vectors

Multiply each number by 3
x * 3

[1] 3 6 9 12 15

subtraction, division,
or exponentiation are the same
x^2

[1] 1 4 9 16 25

Vector - operations
Now we have a vector contains 1 to 5 numbers, there are two ways to do this:

© 2021 Zhenyuan Lu
39 / 90

Vector - operation (cont'd)
Squared root
sqrt(x)

[1] 1.000000 1.414214 1.732051 2.000000 2.236068

© 2021 Zhenyuan Lu
40 / 90

Using c() function is the most
common way to create a vector

x <- c(1,2,3,4,5)

y <- c(1:5)

Be sure to check the length of x and y,
which needs to be the same

length(x)

[1] 5

length(y)

[1] 5

Vector - operation (cont'd)
Vector operations can be extended even further. Let’s say we have two vectors of
equal length. Each of the corresponding elements can be operated on together.

© 2021 Zhenyuan Lu
41 / 90

Vector - operation (cont'd)
Add x to y
x + y

[1] 2 4 6 8 10

Multiply x by y
x * y

[1] 1 4 9 16 25

© 2021 Zhenyuan Lu

Lander, Jared P.R For Everyone - Advanced Analytics and Graphics. Pearson Education (Us),
2017.

42 / 90

Vector - operation (cont'd)
Divided by y
x / y

[1] 1 1 1 1 1

x to the power of y
x^y

[1] 1 4 27 256 3125

© 2021 Zhenyuan Lu

Lander, Jared P.R For Everyone - Advanced Analytics and Graphics. Pearson Education (Us),
2017.

43 / 90

Here is the answer

x <- c(1:5)

x + c(1,2)

[1] 2 4 4 6 6

HOW?

The shorter vector will have a loop of
adding up to the longer vector 1+1,
2+2, 3+1, 4+2, 5+1
Thus

x + c(1,2)
[1] 2 4 4 6 6

Vector - operation (cont'd)
What if these two vectors are not in the same length, what will happen?

Question

x <- c(1:5)

x + c(1,2)
???

© 2021 Zhenyuan Lu
44 / 90

Vector - comparisons
Comparisons also work on vectors. Here the result is a vector of the same length
containing TRUE or FALSE for each element.

x <- c(1:5)
x

[1] 1 2 3 4 5

if each of the element in x are smaller and equal to 3?
x <=3

[1] TRUE TRUE TRUE FALSE FALSE

© 2021 Zhenyuan Lu

Lander, Jared P.R For Everyone - Advanced Analytics and Graphics. Pearson Education (Us),
2017.

45 / 90

Vector - operation (cont'd)
How to count the number and length of the elements within vector

x <- c(1:5)
Check how many characters of a vector
length(x)

[1] 5

Check how many characters of each element
nchar(x)

[1] 1 1 1 1 1

© 2021 Zhenyuan Lu
46 / 90

Vector - Operation (cont'd)
Name your elements

c("I", "am", "Handsome")

[1] "I" "am" "Handsome"

c(One="I", Two="am", Three="Handsome")

One Two Three
"I" "am" "Handsome"

© 2021 Zhenyuan Lu

Lander, Jared P.R For Everyone - Advanced Analytics and Graphics. Pearson Education (Us),
2017.

47 / 90

x <- c(1:5)
x

[1] 1 2 3 4 5

#Access the 2nd element of the vector x
x[2]

[1] 2

#Access the 1st and 3rd elements of x
x[c(1,3)]

[1] 1 3

#Access the 1st to 3rd elements of x
x[1:3]

[1] 1 2 3

Vector - operation (cont'd)
Accessing individual elements of a vector by using square bracket [] and put the
number to choose which elements of a vector by order

© 2021 Zhenyuan Lu
48 / 90

Factor
Factors are an important concept in R, especially when building models.
Sometimes users may have some errors due to the incorrectly using of factors.
We will mention more in the ggplot2 session

© 2021 Zhenyuan Lu
49 / 90

Factor (cont'd)
We can create and convert to factor by using factor and as.factor function,
respectively

#Save new elements to x
x <- c("I", "am", "awesome")
x

[1] "I" "am" "awesome"

The levels of a factor are the unique values of the factor variables. Here, the
default levels are based on the alphabetical order of "am", "awesome", and "I".

#Converting x to factor
x <- as.factor(x)
x

[1] I am awesome
Levels: am awesome I

© 2021 Zhenyuan Lu
50 / 90

Factor (cont'd)
We can change the levels

x <- factor(x, levels=c("I","awesome","am"))
x

[1] I am awesome
Levels: I awesome am

© 2021 Zhenyuan Lu
51 / 90

Missing Data
Missing data plays a critical role in both statistics and computing, and R has two
types of missing data, NA and NULL. While they are similar, they behave
differently and that difference needs attention.

We will talk about more details later in this semester

© 2021 Zhenyuan Lu

Lander, Jared P.R For Everyone - Advanced Analytics and Graphics. Pearson Education (Us),
2017.

52 / 90

NA
NA will often be seen as just another element of a vector. is.na tests each element
of a vector for missingness.

#Save numbers included NA to x
x <- c(1, 2, 3, NA, 5)
x

[1] 1 2 3 NA 5

#Check how many elements within x
length(x)

[1] 5

#Check if NA
is.na(x)

[1] FALSE FALSE FALSE TRUE FALSE

© 2021 Zhenyuan Lu
53 / 90

NULL
NULL is the absence of anything. It is not exactly missingness, it is
nothingness. Functions can sometimes return NULL and their arguments can
be NULL.

NULL is often returned by expressions and functions whose value is
undefined.

An important difference between NA and NULL is that NULL is atomical and
cannot exist within a vector. If used inside a vector it simply disappears

© 2021 Zhenyuan Lu

The NULL Object, R Documentation

Lander, Jared P.R For Everyone - Advanced Analytics and Graphics. Pearson Education (Us),
2017.

54 / 90

NULL (cont'd)
#Save numbers included NULL to x
x <- c(1, 2, 3, NULL, 5)
x

[1] 1 2 3 5

#Check how many elements within x
length(x)

[1] 4

#Check if all the elements within x are NULL
is.null(x)

[1] FALSE

© 2021 Zhenyuan Lu
55 / 90

If you are not sure about
what will happen after

running one line of
script/code/anything, just
type in and see what will

happen. You will be surprised.

Tips

© 2021 Zhenyuan Lu
56 / 90

Calling Functions
Do average of 1-3
mean(c(1,2,3))

[1] 2

Do sum of 1-3
sum(c(1,2,3))

[1] 6

© 2021 Zhenyuan Lu
57 / 90

Pipe
A new paradigm for calling functions in R is the pipe %>% (ctrl+shift+M for Win,
cmd+shit+M for mac). The pipe works by taking the value or object on the left-
hand side of the pipe and inserting
it into the first argument of the function that
is on the right-hand side of the pipe.

y <- c(1,2,3)
mean(y)

[1] 2

c(1,2,3) %>% mean

[1] 2

© 2021 Zhenyuan Lu
58 / 90

Life is short, use pipe %>%

© 2021 Zhenyuan Lu
59 / 90

Advanced Data Structure
The most common are the data frame, matrix and list. Of these, the data frame
will be the most familiar to anyone who has used a spreadsheet, the matrix to
people familiar with matrix math and the list to programmers.

© 2021 Zhenyuan Lu

Lander, Jared P.R For Everyone - Advanced Analytics and Graphics. Pearson Education (Us),
2017.

60 / 90

Data frames
Perhaps one of the most useful features of R is the data.frame. It is one of the
most often cited reasons for R’s ease of use. On the surface a data.frame is just like
an Excel spreadsheet in that it has columns and rows. In statistical terms, each
column is a variable and each row is an observation.

In terms of how R organizes data.frames, each column is actually a vector, each of
which has the same length. This also implies that within a column each element
must be of the same type, just like with vectors.

© 2021 Zhenyuan Lu

Lander, Jared P.R For Everyone - Advanced Analytics and Graphics. Pearson Education (Us),
2017.

61 / 90

Data frames
There are numerous ways to construct a data.frame, the simplest being to use the
data.frame function

Let’s create a basic data.frame using some of the vectors we have already
introduced, namely x, y and a.

x <- 1:5
y <- -1:3
a <- c("I","am","an","awesome","student")
#Save x, y, a to xya.df as data frame in columns
xya.df <- data.frame(x,y,a)
xya.df

x y a
1 1 -1 I
2 2 0 am
3 3 1 an
4 4 2 awesome
5 5 3 student

© 2021 Zhenyuan Lu
62 / 90

Data frames
The second way to create a data.frame

xya.df <- data.frame(1:5,-1:3,c("I","am","an","awesome","student"))
xya.df

X1.5 X.1.3 c..I....am....an....awesome....student..
1 1 -1 I
2 2 0 am
3 3 1 an
4 4 2 awesome
5 5 3 student

Not recommend to use the same name as the default dataset's, e.g. diamonds,
etc.

© 2021 Zhenyuan Lu
63 / 90

Data frames: change column names
xya.df <- data.frame(first=x, second=y, third=a)
xya.df

first second third
1 1 -1 I
2 2 0 am
3 3 1 an
4 4 2 awesome
5 5 3 student

#or
names(xya.df) <- c(x="first", y="second", a="third")
xya.df

first second third
1 1 -1 I
2 2 0 am
3 3 1 an
4 4 2 awesome
5 5 3 student

© 2021 Zhenyuan Lu
64 / 90

xya.df

first second third
1 1 -1 I
2 2 0 am
3 3 1 an
4 4 2 awesome
5 5 3 student

#Check the number of rows
nrow(xya.df)

[1] 5

#Check the number of columns
ncol(xya.df)

[1] 3

#Check the dimension of the data frames
dim(xya.df)

[1] 5 3

#Check the column names
names(xya.df)

[1] "first" "second" "third"

Data frames: rows and columns
Data.frames are complex objects with many attributes. The most frequently
checked attributes are the number of rows and columns.

© 2021 Zhenyuan Lu
65 / 90

Question
How to check the third columns names of xya.df

[1] "third"

© 2021 Zhenyuan Lu
66 / 90

xya.df

first second third
1 1 -1 I
2 2 0 am
3 3 1 an
4 4 2 awesome
5 5 3 student

#Check the first few rows
head(xya.df)

first second third
1 1 -1 I
2 2 0 am
3 3 1 an
4 4 2 awesome
5 5 3 student

#Check the first three rows
head(xya.df, n=3)

first second third
1 1 -1 I
2 2 0 am

Data frames: rows and columns (cont'd)
Usually a data.frame has far too many rows to print them all to the screen, so
thankfully the head function prints out only the first few rows

© 2021 Zhenyuan Lu
67 / 90

xya.df

first second third
1 1 -1 I
2 2 0 am
3 3 1 an
4 4 2 awesome
5 5 3 student

#Access the "second" column
xya.df$second

[1] -1 0 1 2 3

$ operator
Since each column of the data.frame is an individual vector, it can be accessed
individually and each has its own class. Like many other aspects of R, there are
multiple ways to access an individual column. There is the $ operator and also the
square brackets.

© 2021 Zhenyuan Lu
68 / 90

Add new column to data frame
xya.df$newColumn <- c(1:5)

© 2021 Zhenyuan Lu
69 / 90

xya.df

first second third newColumn
1 1 -1 I 1
2 2 0 am 2
3 3 1 an 3
4 4 2 awesome 4
5 5 3 student 5

#Access the 5th row and 2nd column
xya.df[5,2]

[1] 3

#Access the 5th row
xya.df[5,]

first second third newColumn
5 5 3 student 5

#Access the 1st and 2nd row; and 3rd column
xya.df[c(1,2),3]

[1] "I" "am"

[] square bracket

© 2021 Zhenyuan Lu
70 / 90

Data type of selected column
All of these methods have differing outputs. Some return a vector, some return a
single-column data.frame. To ensure a single-column data.frame while using
single-square brackets, there is a third argument: drop=FALSE. This also works
when specifying a single column by number.

xya.df[, "third"]

[1] "I" "am" "an" "awesome" "student"

class(xya.df[, "third"])

[1] "character"

© 2021 Zhenyuan Lu

Lander, Jared P.R For Everyone - Advanced Analytics and Graphics. Pearson Education (Us),
2017.

71 / 90

Data type of selected column (cont'd)
xya.df[, "third", drop=FALSE]

third
1 I
2 am
3 an
4 awesome
5 student

class(xya.df[, "third",drop=FALSE])

[1] "data.frame"

© 2021 Zhenyuan Lu

Lander, Jared P.R For Everyone - Advanced Analytics and Graphics. Pearson Education (Us),
2017.

72 / 90

Data type of selected rows (cont'd)
xya.df[xya.df$second>1,]

first second third newColumn
4 4 2 awesome 4
5 5 3 student 5

xya.df[xya.df$second>1,2:3]

second third
4 2 awesome
5 3 student

© 2021 Zhenyuan Lu
73 / 90

Lists
A list can contain all numeric or characters or a mix of the two or data.frames or,
recursively, other lists.

© 2021 Zhenyuan Lu

Lander, Jared P.R For Everyone - Advanced Analytics and Graphics. Pearson Education (Us),
2017.

74 / 90

#Create a three element list
list(1,2,3)

[[1]]
[1] 1

[[2]]
[1] 2

[[3]]
[1] 3

#Create a single element list
list(c(1,2,3))

[[1]]
[1] 1 2 3

Create list
A list can contain all numeric or characters or a mix of the two or data.frames or,
recursively, other lists.

Lists are created with the list function where each argument to the function
becomes an element of the list.

© 2021 Zhenyuan Lu
75 / 90

Create list (cont'd)
#Create a two element list
list(c(1,2,3), 1:4)

[[1]]
[1] 1 2 3

[[2]]
[1] 1 2 3 4

#Create a two element list, one element is a factor, the other one is a 3 element vectors
b <- c("master", "PhD", "undergrade", "others", "master")
list(c(1:3),b)

[[1]]
[1] 1 2 3

[[2]]
[1] "master" "PhD" "undergrade" "others" "master"

© 2021 Zhenyuan Lu
76 / 90

Rename lists
Using names() function to name the list

#Create a two element list, one element is a factor, the other one is a 3 element vectors
d <- list(c(1:3),b)

#Name the 1st list of d, number, and 2nd with degree.
names(d) <- c("number", "degree")
d

$number
[1] 1 2 3

$degree
[1] "master" "PhD" "undergrade" "others" "master"

© 2021 Zhenyuan Lu
77 / 90

Rename lists (cont'd)
Names can also be assigned to list elements during creation using name-value
pairs.

list1 <- list(number=1:3, degree=b)
list1

$number
[1] 1 2 3

$degree
[1] "master" "PhD" "undergrade" "others" "master"

© 2021 Zhenyuan Lu
78 / 90

Access a specific list
To access an individual element of a list, use double square brackets, specifying
either the element number or name. Note that this allows access to only one
element at a time.

list1 <- list(number=1:3, degree=b)

#Access the first list
list1[[1]]

[1] 1 2 3

list1[1]

$number
[1] 1 2 3

© 2021 Zhenyuan Lu
79 / 90

Add one more list to an exist list
It is possible to append elements to a list simply by using an index (either
numeric or named) that does not exist.

d <- list(number=1:3, degree=b)

#Check how many elements within one list d
length(d)

[1] 2

#Add one list of four sevens, unnamed
d[[3]] <- c(7, 7, 7, 7)
#Add a fourth list, named
d[["student"]] <- c("John", "Peter", "Tome", "Jerry")

© 2021 Zhenyuan Lu
80 / 90

Add one more list to an exist list (cont'd)
d

$number
[1] 1 2 3

$degree
[1] "master" "PhD" "undergrade" "others" "master"

[[3]]
[1] 7 7 7 7

$student
[1] "John" "Peter" "Tome" "Jerry"

© 2021 Zhenyuan Lu
81 / 90

Matrix
A very common mathematical structure that is essential to statistics is a matrix.
This is similar to a data.frame in that it is rectangular with rows and columns
except that every single element, regardless of column, must be the same type,
most commonly all numerics. They also act similarly to vectors with element-by-
element addition, multiplication, subtraction, division and equality. The nrow, ncol
and dim functions work just like they do for data.frames.

© 2021 Zhenyuan Lu

Lander, Jared P.R For Everyone - Advanced Analytics and Graphics. Pearson Education (Us),
2017.

82 / 90

Create matrix
Using matrix() function to create matrix

#Create 2X3 matrix
A <- matrix(1:6, nrow=3)
A

[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6

nrow(A)

[1] 3

ncol(A)

[1] 2

© 2021 Zhenyuan Lu
83 / 90

Create another matrix
Using matrix() function to create matrix

#Create another 2X3 matrix
B <- matrix(2:7, nrow=3)
B

[,1] [,2]
[1,] 2 5
[2,] 3 6
[3,] 4 7

nrow(B)

[1] 3

ncol(B)

[1] 2

© 2021 Zhenyuan Lu
84 / 90

Camparison/calculation between two
matrix
#See if they are equal
A == B

[,1] [,2]
[1,] FALSE FALSE
[2,] FALSE FALSE
[3,] FALSE FALSE

#Multiply A by B
A*B

[,1] [,2]
[1,] 2 20
[2,] 6 30
[3,] 12 42

© 2021 Zhenyuan Lu
85 / 90

Data input to R
As with everything in R, there are numerous ways to get data; the most common
is probably reading comma separated values (CSV) files. Of course there are many
other options that we will cover as well.

© 2021 Zhenyuan Lu

Lander, Jared P.R For Everyone - Advanced Analytics and Graphics. Pearson Education (Us),
2017.

86 / 90

CSV
data source: http://www.jaredlander.com/data/Tomato%20First.csv

readurl <- "http://www.jaredlander.com/data/Tomato%20First.csv"
read.csv(readurl)

#For Window users
#be aware of the "/" not "\"
tomato <- read.csv("C:/tomato.csv")
#For Mac user, no need to put disk name
tomato <- read.csv("/Users/tomato.csv")

© 2021 Zhenyuan Lu
87 / 90

http://www.jaredlander.com/data/Tomato%20First.csv

CSV (cont'd)
library(tidyverse)
#or
library(readr)

tomato <- read_csv("tomato.csv")

© 2021 Zhenyuan Lu
88 / 90

Excel data
While Excel may be the world’s most popular data analysis tool, it is unfortunately
difficult to read Excel data into R. The simplest method would be to use Excel (or
another spreadsheet program) to convert the Excel file to a CSV file.

However, if you want to read excel data, you will install some read excel packages,
such as readxl.

install.packages("readxl")
library(readxl)
Tomato <- read_excel ("Your excel file location")

© 2021 Zhenyuan Lu
89 / 90

Other statistical tools

© 2021 Zhenyuan Lu
90 / 90

